New types of multisoliton solutions of some integrable equations via direct methods

Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Burde, Georgy I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1738
creator Burde, Georgy I.
description Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.
doi_str_mv 10.1063/1.4952011
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121747740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c564bd0e20980bb1a6515b23b9648a4fc5465176854c41a3e7668cf4d32abc9d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LH3DzbpQy-YNCFCu5C2qaaoW06TToy_946HXDn6sA9H_ccDkKXQBZAJLuBBc8EJQBHaAZCQKIkyGM0IyTjCeXs4xSdhbAmhGZKpTP0-my_cdx1NmBf4Waoowu-dtG3eNQhOt_uneAbi10b7Wdv8tpiuxnMZG6dwaXrbRFxY-OXL8M5OqlMHezFQefo_f7ubfmYrF4enpa3q6SjgsWkEJLnJbGUZCnJczBSgMgpyzPJU8OrQvDxomQqeMHBMKukTIuKl4yavMhKNkdX09-u95vBhqjXfujbMVJToKC4UpyM1PVEhcLFfWfd9a4x_U4D0b-jadCH0f6Dt77_A3VXVuwHI2tthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121747740</pqid></control><display><type>conference_proceeding</type><title>New types of multisoliton solutions of some integrable equations via direct methods</title><source>AIP Journals Complete</source><creator>Burde, Georgy I.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Burde, Georgy I. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952011</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Hyperbolic functions ; Identification methods ; Mathematical analysis ; Solitary waves</subject><ispartof>AIP conference proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4952011$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Burde, Georgy I.</creatorcontrib><title>New types of multisoliton solutions of some integrable equations via direct methods</title><title>AIP conference proceedings</title><description>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</description><subject>Hyperbolic functions</subject><subject>Identification methods</subject><subject>Mathematical analysis</subject><subject>Solitary waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LH3DzbpQy-YNCFCu5C2qaaoW06TToy_946HXDn6sA9H_ccDkKXQBZAJLuBBc8EJQBHaAZCQKIkyGM0IyTjCeXs4xSdhbAmhGZKpTP0-my_cdx1NmBf4Waoowu-dtG3eNQhOt_uneAbi10b7Wdv8tpiuxnMZG6dwaXrbRFxY-OXL8M5OqlMHezFQefo_f7ubfmYrF4enpa3q6SjgsWkEJLnJbGUZCnJczBSgMgpyzPJU8OrQvDxomQqeMHBMKukTIuKl4yavMhKNkdX09-u95vBhqjXfujbMVJToKC4UpyM1PVEhcLFfWfd9a4x_U4D0b-jadCH0f6Dt77_A3VXVuwHI2tthg</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Burde, Georgy I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>New types of multisoliton solutions of some integrable equations via direct methods</title><author>Burde, Georgy I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c564bd0e20980bb1a6515b23b9648a4fc5465176854c41a3e7668cf4d32abc9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Hyperbolic functions</topic><topic>Identification methods</topic><topic>Mathematical analysis</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burde, Georgy I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burde, Georgy I.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New types of multisoliton solutions of some integrable equations via direct methods</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952011</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2016, Vol.1738 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4952011
source AIP Journals Complete
subjects Hyperbolic functions
Identification methods
Mathematical analysis
Solitary waves
title New types of multisoliton solutions of some integrable equations via direct methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20types%20of%20multisoliton%20solutions%20of%20some%20integrable%20equations%20via%20direct%20methods&rft.btitle=AIP%20conference%20proceedings&rft.au=Burde,%20Georgy%20I.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952011&rft_dat=%3Cproquest_scita%3E2121747740%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121747740&rft_id=info:pmid/&rfr_iscdi=true