New types of multisoliton solutions of some integrable equations via direct methods
Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of mul...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1738 |
creator | Burde, Georgy I. |
description | Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory. |
doi_str_mv | 10.1063/1.4952011 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4952011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121747740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c564bd0e20980bb1a6515b23b9648a4fc5465176854c41a3e7668cf4d32abc9d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LH3DzbpQy-YNCFCu5C2qaaoW06TToy_946HXDn6sA9H_ccDkKXQBZAJLuBBc8EJQBHaAZCQKIkyGM0IyTjCeXs4xSdhbAmhGZKpTP0-my_cdx1NmBf4Waoowu-dtG3eNQhOt_uneAbi10b7Wdv8tpiuxnMZG6dwaXrbRFxY-OXL8M5OqlMHezFQefo_f7ubfmYrF4enpa3q6SjgsWkEJLnJbGUZCnJczBSgMgpyzPJU8OrQvDxomQqeMHBMKukTIuKl4yavMhKNkdX09-u95vBhqjXfujbMVJToKC4UpyM1PVEhcLFfWfd9a4x_U4D0b-jadCH0f6Dt77_A3VXVuwHI2tthg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121747740</pqid></control><display><type>conference_proceeding</type><title>New types of multisoliton solutions of some integrable equations via direct methods</title><source>AIP Journals Complete</source><creator>Burde, Georgy I.</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Burde, Georgy I. ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4952011</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Hyperbolic functions ; Identification methods ; Mathematical analysis ; Solitary waves</subject><ispartof>AIP conference proceedings, 2016, Vol.1738 (1)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4952011$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Burde, Georgy I.</creatorcontrib><title>New types of multisoliton solutions of some integrable equations via direct methods</title><title>AIP conference proceedings</title><description>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</description><subject>Hyperbolic functions</subject><subject>Identification methods</subject><subject>Mathematical analysis</subject><subject>Solitary waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBd0LH3DzbpQy-YNCFCu5C2qaaoW06TToy_946HXDn6sA9H_ccDkKXQBZAJLuBBc8EJQBHaAZCQKIkyGM0IyTjCeXs4xSdhbAmhGZKpTP0-my_cdx1NmBf4Waoowu-dtG3eNQhOt_uneAbi10b7Wdv8tpiuxnMZG6dwaXrbRFxY-OXL8M5OqlMHezFQefo_f7ubfmYrF4enpa3q6SjgsWkEJLnJbGUZCnJczBSgMgpyzPJU8OrQvDxomQqeMHBMKukTIuKl4yavMhKNkdX09-u95vBhqjXfujbMVJToKC4UpyM1PVEhcLFfWfd9a4x_U4D0b-jadCH0f6Dt77_A3VXVuwHI2tthg</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Burde, Georgy I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160608</creationdate><title>New types of multisoliton solutions of some integrable equations via direct methods</title><author>Burde, Georgy I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c564bd0e20980bb1a6515b23b9648a4fc5465176854c41a3e7668cf4d32abc9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Hyperbolic functions</topic><topic>Identification methods</topic><topic>Mathematical analysis</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burde, Georgy I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burde, Georgy I.</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>New types of multisoliton solutions of some integrable equations via direct methods</atitle><btitle>AIP conference proceedings</btitle><date>2016-06-08</date><risdate>2016</risdate><volume>1738</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4952011</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2016, Vol.1738 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4952011 |
source | AIP Journals Complete |
subjects | Hyperbolic functions Identification methods Mathematical analysis Solitary waves |
title | New types of multisoliton solutions of some integrable equations via direct methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=New%20types%20of%20multisoliton%20solutions%20of%20some%20integrable%20equations%20via%20direct%20methods&rft.btitle=AIP%20conference%20proceedings&rft.au=Burde,%20Georgy%20I.&rft.date=2016-06-08&rft.volume=1738&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4952011&rft_dat=%3Cproquest_scita%3E2121747740%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121747740&rft_id=info:pmid/&rfr_iscdi=true |