Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction

We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. Thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-04, Vol.119 (16)
Hauptverfasser: Tao, Y., Hagmeijer, R., van der Weide, E. T. A., Bastiaens, H. M. J., Boller, K.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 119
creator Tao, Y.
Hagmeijer, R.
van der Weide, E. T. A.
Bastiaens, H. M. J.
Boller, K.-J.
description We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, 〈 N 〉 , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter ( Γ * > 10 4 ) . This range is of relevance for experiments on high-intensity laser matter interactions.
doi_str_mv 10.1063/1.4947187
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4947187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121793323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</originalsourceid><addsrcrecordid>eNqdkN1LwzAUxYMoOKcP_gcBnxQ689E2yaMMv2AgiD6H2zTtMrq2Jtlg_72pE3z36V7O_Z1z4SB0TcmCkpLf00WuckGlOEEzSqTKRFGQUzQjhNFMKqHO0UUIG0IolVzNUPVu9y646PoWg2-HHptuF6L1uBn8FqJLiusx4LGDHjxuIeCNjdMVr127zlwfbZ8CDriDkGzJM7kn2YOZ_JforIEu2KvfOUefT48fy5ds9fb8unxYZSZnMma5LMq01CAaI5QhVUMYg5xUqpIMjGxsyRmUoFgJNTVAhaVVRXiRC2LqWvA5ujnmjn742tkQ9WbY-T691IwyKhTnjCfq9kgZP4TgbaNH77bgD5oSPVWoqf6tMLF3RzYYF3-6-B-8H_wfqMe64d-ZQoCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121793323</pqid></control><display><type>article</type><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</creator><creatorcontrib>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</creatorcontrib><description>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, 〈 N 〉 , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter ( Γ * &gt; 10 4 ) . This range is of relevance for experiments on high-intensity laser matter interactions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4947187</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Argon ; Clusters ; Gas jets ; Mathematical models ; Nozzles ; One dimensional models ; Optical measurement ; Predictions ; Rayleigh scattering ; Size distribution ; Stagnation pressure ; Surface tension ; Trustworthiness</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (16)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</citedby><cites>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4947187$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Tao, Y.</creatorcontrib><creatorcontrib>Hagmeijer, R.</creatorcontrib><creatorcontrib>van der Weide, E. T. A.</creatorcontrib><creatorcontrib>Bastiaens, H. M. J.</creatorcontrib><creatorcontrib>Boller, K.-J.</creatorcontrib><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><title>Journal of applied physics</title><description>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, 〈 N 〉 , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter ( Γ * &gt; 10 4 ) . This range is of relevance for experiments on high-intensity laser matter interactions.</description><subject>Applied physics</subject><subject>Argon</subject><subject>Clusters</subject><subject>Gas jets</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>One dimensional models</subject><subject>Optical measurement</subject><subject>Predictions</subject><subject>Rayleigh scattering</subject><subject>Size distribution</subject><subject>Stagnation pressure</subject><subject>Surface tension</subject><subject>Trustworthiness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkN1LwzAUxYMoOKcP_gcBnxQ689E2yaMMv2AgiD6H2zTtMrq2Jtlg_72pE3z36V7O_Z1z4SB0TcmCkpLf00WuckGlOEEzSqTKRFGQUzQjhNFMKqHO0UUIG0IolVzNUPVu9y646PoWg2-HHptuF6L1uBn8FqJLiusx4LGDHjxuIeCNjdMVr127zlwfbZ8CDriDkGzJM7kn2YOZ_JforIEu2KvfOUefT48fy5ds9fb8unxYZSZnMma5LMq01CAaI5QhVUMYg5xUqpIMjGxsyRmUoFgJNTVAhaVVRXiRC2LqWvA5ujnmjn742tkQ9WbY-T691IwyKhTnjCfq9kgZP4TgbaNH77bgD5oSPVWoqf6tMLF3RzYYF3-6-B-8H_wfqMe64d-ZQoCg</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Tao, Y.</creator><creator>Hagmeijer, R.</creator><creator>van der Weide, E. T. A.</creator><creator>Bastiaens, H. M. J.</creator><creator>Boller, K.-J.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160428</creationdate><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><author>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Argon</topic><topic>Clusters</topic><topic>Gas jets</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>One dimensional models</topic><topic>Optical measurement</topic><topic>Predictions</topic><topic>Rayleigh scattering</topic><topic>Size distribution</topic><topic>Stagnation pressure</topic><topic>Surface tension</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Y.</creatorcontrib><creatorcontrib>Hagmeijer, R.</creatorcontrib><creatorcontrib>van der Weide, E. T. A.</creatorcontrib><creatorcontrib>Bastiaens, H. M. J.</creatorcontrib><creatorcontrib>Boller, K.-J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Y.</au><au>Hagmeijer, R.</au><au>van der Weide, E. T. A.</au><au>Bastiaens, H. M. J.</au><au>Boller, K.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-28</date><risdate>2016</risdate><volume>119</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, 〈 N 〉 , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter ( Γ * &gt; 10 4 ) . This range is of relevance for experiments on high-intensity laser matter interactions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4947187</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2016-04, Vol.119 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4947187
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Argon
Clusters
Gas jets
Mathematical models
Nozzles
One dimensional models
Optical measurement
Predictions
Rayleigh scattering
Size distribution
Stagnation pressure
Surface tension
Trustworthiness
title Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20argon%20cluster%20formation%20in%20a%20planar%20gas%20jet%20for%20high-intensity%20laser%20matter%20interaction&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tao,%20Y.&rft.date=2016-04-28&rft.volume=119&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4947187&rft_dat=%3Cproquest_scita%3E2121793323%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121793323&rft_id=info:pmid/&rfr_iscdi=true