Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction
We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. Thes...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-04, Vol.119 (16) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 119 |
creator | Tao, Y. Hagmeijer, R. van der Weide, E. T. A. Bastiaens, H. M. J. Boller, K.-J. |
description | We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size,
〈
N
〉
, the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter
(
Γ
*
>
10
4
)
. This range is of relevance for experiments on high-intensity laser matter interactions. |
doi_str_mv | 10.1063/1.4947187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4947187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121793323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</originalsourceid><addsrcrecordid>eNqdkN1LwzAUxYMoOKcP_gcBnxQ689E2yaMMv2AgiD6H2zTtMrq2Jtlg_72pE3z36V7O_Z1z4SB0TcmCkpLf00WuckGlOEEzSqTKRFGQUzQjhNFMKqHO0UUIG0IolVzNUPVu9y646PoWg2-HHptuF6L1uBn8FqJLiusx4LGDHjxuIeCNjdMVr127zlwfbZ8CDriDkGzJM7kn2YOZ_JforIEu2KvfOUefT48fy5ds9fb8unxYZSZnMma5LMq01CAaI5QhVUMYg5xUqpIMjGxsyRmUoFgJNTVAhaVVRXiRC2LqWvA5ujnmjn742tkQ9WbY-T691IwyKhTnjCfq9kgZP4TgbaNH77bgD5oSPVWoqf6tMLF3RzYYF3-6-B-8H_wfqMe64d-ZQoCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121793323</pqid></control><display><type>article</type><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</creator><creatorcontrib>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</creatorcontrib><description>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size,
〈
N
〉
, the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter
(
Γ
*
>
10
4
)
. This range is of relevance for experiments on high-intensity laser matter interactions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4947187</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Argon ; Clusters ; Gas jets ; Mathematical models ; Nozzles ; One dimensional models ; Optical measurement ; Predictions ; Rayleigh scattering ; Size distribution ; Stagnation pressure ; Surface tension ; Trustworthiness</subject><ispartof>Journal of applied physics, 2016-04, Vol.119 (16)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</citedby><cites>FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4947187$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Tao, Y.</creatorcontrib><creatorcontrib>Hagmeijer, R.</creatorcontrib><creatorcontrib>van der Weide, E. T. A.</creatorcontrib><creatorcontrib>Bastiaens, H. M. J.</creatorcontrib><creatorcontrib>Boller, K.-J.</creatorcontrib><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><title>Journal of applied physics</title><description>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size,
〈
N
〉
, the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter
(
Γ
*
>
10
4
)
. This range is of relevance for experiments on high-intensity laser matter interactions.</description><subject>Applied physics</subject><subject>Argon</subject><subject>Clusters</subject><subject>Gas jets</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>One dimensional models</subject><subject>Optical measurement</subject><subject>Predictions</subject><subject>Rayleigh scattering</subject><subject>Size distribution</subject><subject>Stagnation pressure</subject><subject>Surface tension</subject><subject>Trustworthiness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdkN1LwzAUxYMoOKcP_gcBnxQ689E2yaMMv2AgiD6H2zTtMrq2Jtlg_72pE3z36V7O_Z1z4SB0TcmCkpLf00WuckGlOEEzSqTKRFGQUzQjhNFMKqHO0UUIG0IolVzNUPVu9y646PoWg2-HHptuF6L1uBn8FqJLiusx4LGDHjxuIeCNjdMVr127zlwfbZ8CDriDkGzJM7kn2YOZ_JforIEu2KvfOUefT48fy5ds9fb8unxYZSZnMma5LMq01CAaI5QhVUMYg5xUqpIMjGxsyRmUoFgJNTVAhaVVRXiRC2LqWvA5ujnmjn742tkQ9WbY-T691IwyKhTnjCfq9kgZP4TgbaNH77bgD5oSPVWoqf6tMLF3RzYYF3-6-B-8H_wfqMe64d-ZQoCg</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Tao, Y.</creator><creator>Hagmeijer, R.</creator><creator>van der Weide, E. T. A.</creator><creator>Bastiaens, H. M. J.</creator><creator>Boller, K.-J.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160428</creationdate><title>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</title><author>Tao, Y. ; Hagmeijer, R. ; van der Weide, E. T. A. ; Bastiaens, H. M. J. ; Boller, K.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-4856428da7fc79c0bf022a40b9b82ac8fe632a6a926ad1ca17e1bb035470cdd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Argon</topic><topic>Clusters</topic><topic>Gas jets</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>One dimensional models</topic><topic>Optical measurement</topic><topic>Predictions</topic><topic>Rayleigh scattering</topic><topic>Size distribution</topic><topic>Stagnation pressure</topic><topic>Surface tension</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Y.</creatorcontrib><creatorcontrib>Hagmeijer, R.</creatorcontrib><creatorcontrib>van der Weide, E. T. A.</creatorcontrib><creatorcontrib>Bastiaens, H. M. J.</creatorcontrib><creatorcontrib>Boller, K.-J.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Y.</au><au>Hagmeijer, R.</au><au>van der Weide, E. T. A.</au><au>Bastiaens, H. M. J.</au><au>Boller, K.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction</atitle><jtitle>Journal of applied physics</jtitle><date>2016-04-28</date><risdate>2016</risdate><volume>119</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size,
〈
N
〉
, the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter
(
Γ
*
>
10
4
)
. This range is of relevance for experiments on high-intensity laser matter interactions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4947187</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2016-04, Vol.119 (16) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4947187 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Argon Clusters Gas jets Mathematical models Nozzles One dimensional models Optical measurement Predictions Rayleigh scattering Size distribution Stagnation pressure Surface tension Trustworthiness |
title | Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20argon%20cluster%20formation%20in%20a%20planar%20gas%20jet%20for%20high-intensity%20laser%20matter%20interaction&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tao,%20Y.&rft.date=2016-04-28&rft.volume=119&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4947187&rft_dat=%3Cproquest_scita%3E2121793323%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121793323&rft_id=info:pmid/&rfr_iscdi=true |