Lattice-Boltzmann hydrodynamics of anisotropic active matter

A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-04, Vol.144 (13), p.134106-134106
Hauptverfasser: de Graaf, Joost, Menke, Henri, Mathijssen, Arnold J. T. M., Fabritius, Marc, Holm, Christian, Shendruk, Tyler N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134106
container_issue 13
container_start_page 134106
container_title The Journal of chemical physics
container_volume 144
creator de Graaf, Joost
Menke, Henri
Mathijssen, Arnold J. T. M.
Fabritius, Marc
Holm, Christian
Shendruk, Tyler N.
description A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.
doi_str_mv 10.1063/1.4944962
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4944962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1779886851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-cb2b65efc05050b31770a693fc73e2ee92c5906528a10e55e51b78096213e9493</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgio6jC19ACm5UqN6bNmkDblT8gwE3ug5pJsXItBmTdGB8eiMzKihIFtl8OTf3EHKAcIbAi3M8K0VZCk43yAihFnnFBWySEQDFXHDgO2Q3hFcAwIqW22SHVsAE4zgiFxMVo9Umv3Kz-N6pvs9ellPvpstedVaHzLWZ6m1w0bu51ZnS0S5M1qVXxu-RrVbNgtlf32PyfHvzdH2fTx7vHq4vJ7kusY65bmjDmWk1sHSaAqsKFBdFq6vCUGME1UwAZ7RWCIYxw7Cpakj7YGFEKYoxOV7lzr17G0yIsrNBm9lM9cYNQaZAUde8Zpjo0S_66gbfp99JihTromKMJ3WyUtq7ELxp5dzbTvmlRJCflUqU60qTPVwnDk1npt_yq8METlcgaBtVtK7_Ngvnf5LkfNr-h_-O_gCB5Yqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121837556</pqid></control><display><type>article</type><title>Lattice-Boltzmann hydrodynamics of anisotropic active matter</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>de Graaf, Joost ; Menke, Henri ; Mathijssen, Arnold J. T. M. ; Fabritius, Marc ; Holm, Christian ; Shendruk, Tyler N.</creator><creatorcontrib>de Graaf, Joost ; Menke, Henri ; Mathijssen, Arnold J. T. M. ; Fabritius, Marc ; Holm, Christian ; Shendruk, Tyler N.</creatorcontrib><description>A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4944962</identifier><identifier>PMID: 27059561</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anisotropy ; Computational fluid dynamics ; Computer simulation ; Confining ; Dipole moments ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Quadrupoles ; Scandals</subject><ispartof>The Journal of chemical physics, 2016-04, Vol.144 (13), p.134106-134106</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-cb2b65efc05050b31770a693fc73e2ee92c5906528a10e55e51b78096213e9493</citedby><cites>FETCH-LOGICAL-c418t-cb2b65efc05050b31770a693fc73e2ee92c5906528a10e55e51b78096213e9493</cites><orcidid>0000-0003-2739-310X ; 0000-0001-7671-2184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4944962$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27059561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Graaf, Joost</creatorcontrib><creatorcontrib>Menke, Henri</creatorcontrib><creatorcontrib>Mathijssen, Arnold J. T. M.</creatorcontrib><creatorcontrib>Fabritius, Marc</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><creatorcontrib>Shendruk, Tyler N.</creatorcontrib><title>Lattice-Boltzmann hydrodynamics of anisotropic active matter</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Confining</subject><subject>Dipole moments</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Quadrupoles</subject><subject>Scandals</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgio6jC19ACm5UqN6bNmkDblT8gwE3ug5pJsXItBmTdGB8eiMzKihIFtl8OTf3EHKAcIbAi3M8K0VZCk43yAihFnnFBWySEQDFXHDgO2Q3hFcAwIqW22SHVsAE4zgiFxMVo9Umv3Kz-N6pvs9ellPvpstedVaHzLWZ6m1w0bu51ZnS0S5M1qVXxu-RrVbNgtlf32PyfHvzdH2fTx7vHq4vJ7kusY65bmjDmWk1sHSaAqsKFBdFq6vCUGME1UwAZ7RWCIYxw7Cpakj7YGFEKYoxOV7lzr17G0yIsrNBm9lM9cYNQaZAUde8Zpjo0S_66gbfp99JihTromKMJ3WyUtq7ELxp5dzbTvmlRJCflUqU60qTPVwnDk1npt_yq8METlcgaBtVtK7_Ngvnf5LkfNr-h_-O_gCB5Yqy</recordid><startdate>20160407</startdate><enddate>20160407</enddate><creator>de Graaf, Joost</creator><creator>Menke, Henri</creator><creator>Mathijssen, Arnold J. T. M.</creator><creator>Fabritius, Marc</creator><creator>Holm, Christian</creator><creator>Shendruk, Tyler N.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid><orcidid>https://orcid.org/0000-0001-7671-2184</orcidid></search><sort><creationdate>20160407</creationdate><title>Lattice-Boltzmann hydrodynamics of anisotropic active matter</title><author>de Graaf, Joost ; Menke, Henri ; Mathijssen, Arnold J. T. M. ; Fabritius, Marc ; Holm, Christian ; Shendruk, Tyler N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-cb2b65efc05050b31770a693fc73e2ee92c5906528a10e55e51b78096213e9493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Confining</topic><topic>Dipole moments</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Quadrupoles</topic><topic>Scandals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Graaf, Joost</creatorcontrib><creatorcontrib>Menke, Henri</creatorcontrib><creatorcontrib>Mathijssen, Arnold J. T. M.</creatorcontrib><creatorcontrib>Fabritius, Marc</creatorcontrib><creatorcontrib>Holm, Christian</creatorcontrib><creatorcontrib>Shendruk, Tyler N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Graaf, Joost</au><au>Menke, Henri</au><au>Mathijssen, Arnold J. T. M.</au><au>Fabritius, Marc</au><au>Holm, Christian</au><au>Shendruk, Tyler N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice-Boltzmann hydrodynamics of anisotropic active matter</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-04-07</date><risdate>2016</risdate><volume>144</volume><issue>13</issue><spage>134106</spage><epage>134106</epage><pages>134106-134106</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27059561</pmid><doi>10.1063/1.4944962</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2739-310X</orcidid><orcidid>https://orcid.org/0000-0001-7671-2184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-04, Vol.144 (13), p.134106-134106
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_1_4944962
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Computational fluid dynamics
Computer simulation
Confining
Dipole moments
Fluid flow
Fluid mechanics
Hydrodynamics
Quadrupoles
Scandals
title Lattice-Boltzmann hydrodynamics of anisotropic active matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice-Boltzmann%20hydrodynamics%20of%20anisotropic%20active%20matter&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=de%20Graaf,%20Joost&rft.date=2016-04-07&rft.volume=144&rft.issue=13&rft.spage=134106&rft.epage=134106&rft.pages=134106-134106&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4944962&rft_dat=%3Cproquest_scita%3E1779886851%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121837556&rft_id=info:pmid/27059561&rfr_iscdi=true