Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics

Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Septiani, Eka Lutfi, Widiyastuti, W., Winardi, Sugeng, Machmudah, Siti, Nurtono, Tantular, Kusdianto
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1712
creator Septiani, Eka Lutfi
Widiyastuti, W.
Winardi, Sugeng
Machmudah, Siti
Nurtono, Tantular
Kusdianto
description Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ε and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
doi_str_mv 10.1063/1.4941879
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4941879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121864995</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-6f7b963d9c40c656809bc32effe15351ecc6a335de5cfe6d386cfc6e28a991133</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4ufIOAO6GaNG3aLGUYf2DAjYK7kiY3mqFtapIKfRMf14wz4M7VhXu_czj3IHRJyQ0lnN3Sm0IUtK7EEVrQsqRZxSk_RgtCRJHlBXs7RWchbAnJRVXVC_S9NgZUxM7gOPl26mBQgHunoevs8I6jw6MHbROiXN9OIVo3YDloPMjBjdJHqzpIjNOT-r3ZAccPwKaTPWAZgg0RNA6jlzPWfgaPWxnSJqHJcZyi3MlklxST1VjPg-ytCufoxMguwMVhLtHr_fpl9Zhtnh-eVnebbMzrOmbcVK3gTAtVEMVLXhPRKpZD-oqWrKSgFJeMlRpKZYBrVnNlFIe8lkJQytgSXe190wufE4TYbN3kU57Q5DSnNS-EKBN1vaeCsvvAzehtL_3cUNLsmm9oc2j-P_jL-T-wGbVhP3rsiMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2121864995</pqid></control><display><type>conference_proceeding</type><title>Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics</title><source>AIP Journals Complete</source><creator>Septiani, Eka Lutfi ; Widiyastuti, W. ; Winardi, Sugeng ; Machmudah, Siti ; Nurtono, Tantular ; Kusdianto</creator><contributor>Panatarani, Camellia ; Joni, I. Made</contributor><creatorcontrib>Septiani, Eka Lutfi ; Widiyastuti, W. ; Winardi, Sugeng ; Machmudah, Siti ; Nurtono, Tantular ; Kusdianto ; Panatarani, Camellia ; Joni, I. Made</creatorcontrib><description>Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ε and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4941879</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Carrier gases ; Combustion ; Computational fluid dynamics ; Computer simulation ; Fluid dynamics ; Fluid flow ; Large eddy simulation ; Liquefied petroleum gas ; Mass transfer ; Nanoparticles ; Particle size distribution ; Silicon dioxide ; Simulation ; Temperature distribution ; Turbulence models ; Vortices</subject><ispartof>AIP Conference Proceedings, 2016, Vol.1712 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.4941879$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>310,311,315,782,786,791,792,796,4514,23937,23938,25147,27931,27932,76392</link.rule.ids></links><search><contributor>Panatarani, Camellia</contributor><contributor>Joni, I. Made</contributor><creatorcontrib>Septiani, Eka Lutfi</creatorcontrib><creatorcontrib>Widiyastuti, W.</creatorcontrib><creatorcontrib>Winardi, Sugeng</creatorcontrib><creatorcontrib>Machmudah, Siti</creatorcontrib><creatorcontrib>Nurtono, Tantular</creatorcontrib><creatorcontrib>Kusdianto</creatorcontrib><title>Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics</title><title>AIP Conference Proceedings</title><description>Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ε and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.</description><subject>Aerodynamics</subject><subject>Carrier gases</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Large eddy simulation</subject><subject>Liquefied petroleum gas</subject><subject>Mass transfer</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Temperature distribution</subject><subject>Turbulence models</subject><subject>Vortices</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KxDAUhYMoOI4ufIOAO6GaNG3aLGUYf2DAjYK7kiY3mqFtapIKfRMf14wz4M7VhXu_czj3IHRJyQ0lnN3Sm0IUtK7EEVrQsqRZxSk_RgtCRJHlBXs7RWchbAnJRVXVC_S9NgZUxM7gOPl26mBQgHunoevs8I6jw6MHbROiXN9OIVo3YDloPMjBjdJHqzpIjNOT-r3ZAccPwKaTPWAZgg0RNA6jlzPWfgaPWxnSJqHJcZyi3MlklxST1VjPg-ytCufoxMguwMVhLtHr_fpl9Zhtnh-eVnebbMzrOmbcVK3gTAtVEMVLXhPRKpZD-oqWrKSgFJeMlRpKZYBrVnNlFIe8lkJQytgSXe190wufE4TYbN3kU57Q5DSnNS-EKBN1vaeCsvvAzehtL_3cUNLsmm9oc2j-P_jL-T-wGbVhP3rsiMw</recordid><startdate>20160224</startdate><enddate>20160224</enddate><creator>Septiani, Eka Lutfi</creator><creator>Widiyastuti, W.</creator><creator>Winardi, Sugeng</creator><creator>Machmudah, Siti</creator><creator>Nurtono, Tantular</creator><creator>Kusdianto</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160224</creationdate><title>Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics</title><author>Septiani, Eka Lutfi ; Widiyastuti, W. ; Winardi, Sugeng ; Machmudah, Siti ; Nurtono, Tantular ; Kusdianto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-6f7b963d9c40c656809bc32effe15351ecc6a335de5cfe6d386cfc6e28a991133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Carrier gases</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Large eddy simulation</topic><topic>Liquefied petroleum gas</topic><topic>Mass transfer</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Temperature distribution</topic><topic>Turbulence models</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Septiani, Eka Lutfi</creatorcontrib><creatorcontrib>Widiyastuti, W.</creatorcontrib><creatorcontrib>Winardi, Sugeng</creatorcontrib><creatorcontrib>Machmudah, Siti</creatorcontrib><creatorcontrib>Nurtono, Tantular</creatorcontrib><creatorcontrib>Kusdianto</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Septiani, Eka Lutfi</au><au>Widiyastuti, W.</au><au>Winardi, Sugeng</au><au>Machmudah, Siti</au><au>Nurtono, Tantular</au><au>Kusdianto</au><au>Panatarani, Camellia</au><au>Joni, I. Made</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics</atitle><btitle>AIP Conference Proceedings</btitle><date>2016-02-24</date><risdate>2016</risdate><volume>1712</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ε and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4941879</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2016, Vol.1712 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_1_4941879
source AIP Journals Complete
subjects Aerodynamics
Carrier gases
Combustion
Computational fluid dynamics
Computer simulation
Fluid dynamics
Fluid flow
Large eddy simulation
Liquefied petroleum gas
Mass transfer
Nanoparticles
Particle size distribution
Silicon dioxide
Simulation
Temperature distribution
Turbulence models
Vortices
title Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effect%20of%20turbulence%20modelling%20to%20predict%20combustion%20and%20nanoparticle%20production%20in%20the%20flame%20assisted%20spray%20dryer%20based%20on%20computational%20fluid%20dynamics&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Septiani,%20Eka%20Lutfi&rft.date=2016-02-24&rft.volume=1712&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.4941879&rft_dat=%3Cproquest_scita%3E2121864995%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121864995&rft_id=info:pmid/&rfr_iscdi=true