Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity
In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amo...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-06, Vol.117 (21) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 117 |
creator | Kuang, Ping Hsieh, Mei-Li Lin, Shawn-Yu |
description | In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications. |
doi_str_mv | 10.1063/1.4922292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4922292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123779943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtaPg_8g6ElhNZPsdpOjiF8geNFzSLOz3ZSarEm20H9vSgXvnnKYh3cmLyEXwG6BzcUd3NaKc674AZkBk6pqm4YdkhljHCqpWnVMTlJaMQYghZqRzavPuIwmY0fzEBGrzn2hTy54s6bjEHLwzlJvfEg5TjZPERPtQ6TGDg43zi-pRxOrybu8pSmsTRktUohjLhnU-I6macQ4bLsYSt7C2QLPyFFv1gnPf99T8vn0-PHwUr29P78-3L9VVjR1rmrG5wBYG1Bi3vQAwhpmQHaC14hy0VquGoHS9LYzVnaNKp5x0XLeyrr0cUou97nleqdTWY12sMF7tFkD53LOm4Ku9miM4XvClPUqTLH8P2kOJaxVqhZFXe-VjSGliL0eo_sycauB6V33GvRv98Xe7O1uo9kV8T-8CfEP6rHrxQ-e5pQe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123779943</pqid></control><display><type>article</type><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</creator><creatorcontrib>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</creatorcontrib><description>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4922292</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Amorphous silicon ; Antireflection coatings ; Applied physics ; Arc deposition ; Arsenides ; Broadband ; Contact angle ; Crystal structure ; Gallium arsenide ; Hydrophobic surfaces ; Hydrophobicity ; Nanorods ; Nanostructure ; Photonic crystals ; Photovoltaic cells ; Silicon dioxide ; Silicon wafers ; Solar cells ; Surface chemistry ; Surface layers ; Thin films ; Unity</subject><ispartof>Journal of applied physics, 2015-06, Vol.117 (21)</ispartof><rights>AIP Publishing LLC</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</citedby><cites>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</cites><orcidid>0000-0002-5896-3032 ; 0000000258963032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4922292$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1228625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, Ping</creatorcontrib><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><title>Journal of applied physics</title><description>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</description><subject>Absorption</subject><subject>Amorphous silicon</subject><subject>Antireflection coatings</subject><subject>Applied physics</subject><subject>Arc deposition</subject><subject>Arsenides</subject><subject>Broadband</subject><subject>Contact angle</subject><subject>Crystal structure</subject><subject>Gallium arsenide</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Photonic crystals</subject><subject>Photovoltaic cells</subject><subject>Silicon dioxide</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Surface chemistry</subject><subject>Surface layers</subject><subject>Thin films</subject><subject>Unity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtaPg_8g6ElhNZPsdpOjiF8geNFzSLOz3ZSarEm20H9vSgXvnnKYh3cmLyEXwG6BzcUd3NaKc674AZkBk6pqm4YdkhljHCqpWnVMTlJaMQYghZqRzavPuIwmY0fzEBGrzn2hTy54s6bjEHLwzlJvfEg5TjZPERPtQ6TGDg43zi-pRxOrybu8pSmsTRktUohjLhnU-I6macQ4bLsYSt7C2QLPyFFv1gnPf99T8vn0-PHwUr29P78-3L9VVjR1rmrG5wBYG1Bi3vQAwhpmQHaC14hy0VquGoHS9LYzVnaNKp5x0XLeyrr0cUou97nleqdTWY12sMF7tFkD53LOm4Ku9miM4XvClPUqTLH8P2kOJaxVqhZFXe-VjSGliL0eo_sycauB6V33GvRv98Xe7O1uo9kV8T-8CfEP6rHrxQ-e5pQe</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Kuang, Ping</creator><creator>Hsieh, Mei-Li</creator><creator>Lin, Shawn-Yu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5896-3032</orcidid><orcidid>https://orcid.org/0000000258963032</orcidid></search><sort><creationdate>20150607</creationdate><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><author>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption</topic><topic>Amorphous silicon</topic><topic>Antireflection coatings</topic><topic>Applied physics</topic><topic>Arc deposition</topic><topic>Arsenides</topic><topic>Broadband</topic><topic>Contact angle</topic><topic>Crystal structure</topic><topic>Gallium arsenide</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Photonic crystals</topic><topic>Photovoltaic cells</topic><topic>Silicon dioxide</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Surface chemistry</topic><topic>Surface layers</topic><topic>Thin films</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Ping</creatorcontrib><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Ping</au><au>Hsieh, Mei-Li</au><au>Lin, Shawn-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</atitle><jtitle>Journal of applied physics</jtitle><date>2015-06-07</date><risdate>2015</risdate><volume>117</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4922292</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5896-3032</orcidid><orcidid>https://orcid.org/0000000258963032</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2015-06, Vol.117 (21) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4922292 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption Amorphous silicon Antireflection coatings Applied physics Arc deposition Arsenides Broadband Contact angle Crystal structure Gallium arsenide Hydrophobic surfaces Hydrophobicity Nanorods Nanostructure Photonic crystals Photovoltaic cells Silicon dioxide Silicon wafers Solar cells Surface chemistry Surface layers Thin films Unity |
title | Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20three-dimensional%20photonic%20nanostructures%20for%20achieving%20near-unity%20solar%20absorption%20and%20superhydrophobicity&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kuang,%20Ping&rft.date=2015-06-07&rft.volume=117&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4922292&rft_dat=%3Cproquest_scita%3E2123779943%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123779943&rft_id=info:pmid/&rfr_iscdi=true |