Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-06, Vol.117 (21)
Hauptverfasser: Kuang, Ping, Hsieh, Mei-Li, Lin, Shawn-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 117
creator Kuang, Ping
Hsieh, Mei-Li
Lin, Shawn-Yu
description In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.
doi_str_mv 10.1063/1.4922292
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4922292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123779943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtaPg_8g6ElhNZPsdpOjiF8geNFzSLOz3ZSarEm20H9vSgXvnnKYh3cmLyEXwG6BzcUd3NaKc674AZkBk6pqm4YdkhljHCqpWnVMTlJaMQYghZqRzavPuIwmY0fzEBGrzn2hTy54s6bjEHLwzlJvfEg5TjZPERPtQ6TGDg43zi-pRxOrybu8pSmsTRktUohjLhnU-I6macQ4bLsYSt7C2QLPyFFv1gnPf99T8vn0-PHwUr29P78-3L9VVjR1rmrG5wBYG1Bi3vQAwhpmQHaC14hy0VquGoHS9LYzVnaNKp5x0XLeyrr0cUou97nleqdTWY12sMF7tFkD53LOm4Ku9miM4XvClPUqTLH8P2kOJaxVqhZFXe-VjSGliL0eo_sycauB6V33GvRv98Xe7O1uo9kV8T-8CfEP6rHrxQ-e5pQe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123779943</pqid></control><display><type>article</type><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</creator><creatorcontrib>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</creatorcontrib><description>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of &gt;95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4922292</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Amorphous silicon ; Antireflection coatings ; Applied physics ; Arc deposition ; Arsenides ; Broadband ; Contact angle ; Crystal structure ; Gallium arsenide ; Hydrophobic surfaces ; Hydrophobicity ; Nanorods ; Nanostructure ; Photonic crystals ; Photovoltaic cells ; Silicon dioxide ; Silicon wafers ; Solar cells ; Surface chemistry ; Surface layers ; Thin films ; Unity</subject><ispartof>Journal of applied physics, 2015-06, Vol.117 (21)</ispartof><rights>AIP Publishing LLC</rights><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</citedby><cites>FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</cites><orcidid>0000-0002-5896-3032 ; 0000000258963032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.4922292$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1228625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuang, Ping</creatorcontrib><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><title>Journal of applied physics</title><description>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of &gt;95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</description><subject>Absorption</subject><subject>Amorphous silicon</subject><subject>Antireflection coatings</subject><subject>Applied physics</subject><subject>Arc deposition</subject><subject>Arsenides</subject><subject>Broadband</subject><subject>Contact angle</subject><subject>Crystal structure</subject><subject>Gallium arsenide</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Photonic crystals</subject><subject>Photovoltaic cells</subject><subject>Silicon dioxide</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Surface chemistry</subject><subject>Surface layers</subject><subject>Thin films</subject><subject>Unity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtaPg_8g6ElhNZPsdpOjiF8geNFzSLOz3ZSarEm20H9vSgXvnnKYh3cmLyEXwG6BzcUd3NaKc674AZkBk6pqm4YdkhljHCqpWnVMTlJaMQYghZqRzavPuIwmY0fzEBGrzn2hTy54s6bjEHLwzlJvfEg5TjZPERPtQ6TGDg43zi-pRxOrybu8pSmsTRktUohjLhnU-I6macQ4bLsYSt7C2QLPyFFv1gnPf99T8vn0-PHwUr29P78-3L9VVjR1rmrG5wBYG1Bi3vQAwhpmQHaC14hy0VquGoHS9LYzVnaNKp5x0XLeyrr0cUou97nleqdTWY12sMF7tFkD53LOm4Ku9miM4XvClPUqTLH8P2kOJaxVqhZFXe-VjSGliL0eo_sycauB6V33GvRv98Xe7O1uo9kV8T-8CfEP6rHrxQ-e5pQe</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Kuang, Ping</creator><creator>Hsieh, Mei-Li</creator><creator>Lin, Shawn-Yu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5896-3032</orcidid><orcidid>https://orcid.org/0000000258963032</orcidid></search><sort><creationdate>20150607</creationdate><title>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</title><author>Kuang, Ping ; Hsieh, Mei-Li ; Lin, Shawn-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-402611e4a19365f113ca0a18d324ee8b7c2953e8afcdac8d59261023722784063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption</topic><topic>Amorphous silicon</topic><topic>Antireflection coatings</topic><topic>Applied physics</topic><topic>Arc deposition</topic><topic>Arsenides</topic><topic>Broadband</topic><topic>Contact angle</topic><topic>Crystal structure</topic><topic>Gallium arsenide</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Photonic crystals</topic><topic>Photovoltaic cells</topic><topic>Silicon dioxide</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Surface chemistry</topic><topic>Surface layers</topic><topic>Thin films</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Ping</creatorcontrib><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuang, Ping</au><au>Hsieh, Mei-Li</au><au>Lin, Shawn-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity</atitle><jtitle>Journal of applied physics</jtitle><date>2015-06-07</date><risdate>2015</risdate><volume>117</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of &gt;95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4922292</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5896-3032</orcidid><orcidid>https://orcid.org/0000000258963032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-06, Vol.117 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_1_4922292
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption
Amorphous silicon
Antireflection coatings
Applied physics
Arc deposition
Arsenides
Broadband
Contact angle
Crystal structure
Gallium arsenide
Hydrophobic surfaces
Hydrophobicity
Nanorods
Nanostructure
Photonic crystals
Photovoltaic cells
Silicon dioxide
Silicon wafers
Solar cells
Surface chemistry
Surface layers
Thin films
Unity
title Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20three-dimensional%20photonic%20nanostructures%20for%20achieving%20near-unity%20solar%20absorption%20and%20superhydrophobicity&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kuang,%20Ping&rft.date=2015-06-07&rft.volume=117&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.4922292&rft_dat=%3Cproquest_scita%3E2123779943%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123779943&rft_id=info:pmid/&rfr_iscdi=true