Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been us...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2013-06, Vol.23 (2), p.023111-023111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023111 |
---|---|
container_issue | 2 |
container_start_page | 023111 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 23 |
creator | Dafilis, Mathew P. Frascoli, Federico Cadusch, Peter J. Liley, David T. J. |
description | The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy. |
doi_str_mv | 10.1063/1.4804176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4804176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1398423804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-dcac0d3a0576512111384546248d04d26e4211bd11830fc1f97d4765131ab33c3</originalsourceid><addsrcrecordid>eNqF0LtOwzAYhmELgWgpDNwA8ghIKf59yGFEFQWkSiywsFiu7dCgJA62g9S7J6UFJmDyQY--4UXoFMgUSMquYMpzwiFL99AYSF4kWZrT_c1d8AQEISN0FMIrIQQoE4doRFlOKc_SMXqeu95jUzW2DZVrVY31SrmAVWtw1UbrmypG2-r18MIKNza4oF1Xadw4Y2vsShxXFtva6ujdAG23UrV78ao5RgelqoM92Z0T9DS_eZzdJYuH2_vZ9SLRvGAxMVppYpgiIksFUABgORc8pTw3hBuaWj58Lg1AzkipoSwywzeUgVoyptkEnW93O-_eehuibKqgbV2r1ro-SOCZEBQKwv-nrMj5EOeTXmyp9i4Eb0vZ-apRfi2ByE11CXJXfbBnu9l-2VjzLb8yD-ByC4KuoopD6D_XfsXvzv9A2ZmSfQDAmJcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398423804</pqid></control><display><type>article</type><title>Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Dafilis, Mathew P. ; Frascoli, Federico ; Cadusch, Peter J. ; Liley, David T. J.</creator><creatorcontrib>Dafilis, Mathew P. ; Frascoli, Federico ; Cadusch, Peter J. ; Liley, David T. J.</creatorcontrib><description>The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4804176</identifier><identifier>PMID: 23822476</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>Anesthesia ; Electrocardiography ; Humans ; Models, Theoretical ; Nonlinear Dynamics ; Time Factors</subject><ispartof>Chaos (Woodbury, N.Y.), 2013-06, Vol.23 (2), p.023111-023111</ispartof><rights>AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-dcac0d3a0576512111384546248d04d26e4211bd11830fc1f97d4765131ab33c3</citedby><cites>FETCH-LOGICAL-c493t-dcac0d3a0576512111384546248d04d26e4211bd11830fc1f97d4765131ab33c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,1556,4500,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23822476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dafilis, Mathew P.</creatorcontrib><creatorcontrib>Frascoli, Federico</creatorcontrib><creatorcontrib>Cadusch, Peter J.</creatorcontrib><creatorcontrib>Liley, David T. J.</creatorcontrib><title>Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.</description><subject>Anesthesia</subject><subject>Electrocardiography</subject><subject>Humans</subject><subject>Models, Theoretical</subject><subject>Nonlinear Dynamics</subject><subject>Time Factors</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAYhmELgWgpDNwA8ghIKf59yGFEFQWkSiywsFiu7dCgJA62g9S7J6UFJmDyQY--4UXoFMgUSMquYMpzwiFL99AYSF4kWZrT_c1d8AQEISN0FMIrIQQoE4doRFlOKc_SMXqeu95jUzW2DZVrVY31SrmAVWtw1UbrmypG2-r18MIKNza4oF1Xadw4Y2vsShxXFtva6ujdAG23UrV78ao5RgelqoM92Z0T9DS_eZzdJYuH2_vZ9SLRvGAxMVppYpgiIksFUABgORc8pTw3hBuaWj58Lg1AzkipoSwywzeUgVoyptkEnW93O-_eehuibKqgbV2r1ro-SOCZEBQKwv-nrMj5EOeTXmyp9i4Eb0vZ-apRfi2ByE11CXJXfbBnu9l-2VjzLb8yD-ByC4KuoopD6D_XfsXvzv9A2ZmSfQDAmJcs</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Dafilis, Mathew P.</creator><creator>Frascoli, Federico</creator><creator>Cadusch, Peter J.</creator><creator>Liley, David T. J.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram</title><author>Dafilis, Mathew P. ; Frascoli, Federico ; Cadusch, Peter J. ; Liley, David T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-dcac0d3a0576512111384546248d04d26e4211bd11830fc1f97d4765131ab33c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anesthesia</topic><topic>Electrocardiography</topic><topic>Humans</topic><topic>Models, Theoretical</topic><topic>Nonlinear Dynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dafilis, Mathew P.</creatorcontrib><creatorcontrib>Frascoli, Federico</creatorcontrib><creatorcontrib>Cadusch, Peter J.</creatorcontrib><creatorcontrib>Liley, David T. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dafilis, Mathew P.</au><au>Frascoli, Federico</au><au>Cadusch, Peter J.</au><au>Liley, David T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>2</issue><spage>023111</spage><epage>023111</epage><pages>023111-023111</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.</abstract><cop>United States</cop><pmid>23822476</pmid><doi>10.1063/1.4804176</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2013-06, Vol.23 (2), p.023111-023111 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4804176 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Anesthesia Electrocardiography Humans Models, Theoretical Nonlinear Dynamics Time Factors |
title | Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20dimensional%20chaos%20and%20intermittency%20in%20a%20mesoscopic%20model%20of%20the%20electroencephalogram&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Dafilis,%20Mathew%20P.&rft.date=2013-06-01&rft.volume=23&rft.issue=2&rft.spage=023111&rft.epage=023111&rft.pages=023111-023111&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4804176&rft_dat=%3Cproquest_scita%3E1398423804%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398423804&rft_id=info:pmid/23822476&rfr_iscdi=true |