Wind turbine positioning optimization of wind farm using greedy algorithm
In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function....
Gespeichert in:
Veröffentlicht in: | Journal of renewable and sustainable energy 2013-03, Vol.5 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of renewable and sustainable energy |
container_volume | 5 |
creator | Chen, K. Song, M. X. He, Z. Y. Zhang, X. |
description | In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization. |
doi_str_mv | 10.1063/1.4800194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4800194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419370504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-QowpbM5vs6yjFR6HgpeAxpHnUyO5mTbJK_fTu2qKC4CXJMD-GyR-hcyAzIDm9hhkrCYGKHaDJcEJSEEgPf72P0UkIL4TkKcnSCVo82Vbh2Pu1bTXuXLDRuta2G-y6aBv7IcYaO4PfR2iEb3Afxv7Ga622WNQb5218bk7RkRF10Gf7e4pWd7er-UOyfLxfzG-WiaQ0jQlVmTZllQFUlVK01GzYQypGgeZFplUOZp0brWShFZMlhQpEwYwqi9TkWUGn6GI3tvPutdch8sYGqetatNr1gQODihYkI2yglzsqvQvBa8M7bxvhtxwIH9PiwPdpDfZqZ4O08evP3_jN-R_IO2X-w38nfwKhCHir</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419370504</pqid></control><display><type>article</type><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><source>AIP Journals Complete</source><creator>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</creator><creatorcontrib>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</creatorcontrib><description>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/1.4800194</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><ispartof>Journal of renewable and sustainable energy, 2013-03, Vol.5 (2)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</citedby><cites>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/1.4800194$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Song, M. X.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><title>Journal of renewable and sustainable energy</title><description>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</description><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-QowpbM5vs6yjFR6HgpeAxpHnUyO5mTbJK_fTu2qKC4CXJMD-GyR-hcyAzIDm9hhkrCYGKHaDJcEJSEEgPf72P0UkIL4TkKcnSCVo82Vbh2Pu1bTXuXLDRuta2G-y6aBv7IcYaO4PfR2iEb3Afxv7Ga622WNQb5218bk7RkRF10Gf7e4pWd7er-UOyfLxfzG-WiaQ0jQlVmTZllQFUlVK01GzYQypGgeZFplUOZp0brWShFZMlhQpEwYwqi9TkWUGn6GI3tvPutdch8sYGqetatNr1gQODihYkI2yglzsqvQvBa8M7bxvhtxwIH9PiwPdpDfZqZ4O08evP3_jN-R_IO2X-w38nfwKhCHir</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Chen, K.</creator><creator>Song, M. X.</creator><creator>He, Z. Y.</creator><creator>Zhang, X.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20130301</creationdate><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><author>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Song, M. X.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, K.</au><au>Song, M. X.</au><au>He, Z. Y.</au><au>Zhang, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind turbine positioning optimization of wind farm using greedy algorithm</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>5</volume><issue>2</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</abstract><doi>10.1063/1.4800194</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-7012 |
ispartof | Journal of renewable and sustainable energy, 2013-03, Vol.5 (2) |
issn | 1941-7012 1941-7012 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_4800194 |
source | AIP Journals Complete |
title | Wind turbine positioning optimization of wind farm using greedy algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20turbine%20positioning%20optimization%20of%20wind%20farm%20using%20greedy%20algorithm&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Chen,%20K.&rft.date=2013-03-01&rft.volume=5&rft.issue=2&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/1.4800194&rft_dat=%3Cproquest_scita%3E1419370504%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419370504&rft_id=info:pmid/&rfr_iscdi=true |