Wind turbine positioning optimization of wind farm using greedy algorithm

In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2013-03, Vol.5 (2)
Hauptverfasser: Chen, K., Song, M. X., He, Z. Y., Zhang, X.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 5
creator Chen, K.
Song, M. X.
He, Z. Y.
Zhang, X.
description In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.
doi_str_mv 10.1063/1.4800194
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4800194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419370504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_AgCtbqwW-QowpbM5vs6yjFR6HgpeAxpHnUyO5mTbJK_fTu2qKC4CXJMD-GyR-hcyAzIDm9hhkrCYGKHaDJcEJSEEgPf72P0UkIL4TkKcnSCVo82Vbh2Pu1bTXuXLDRuta2G-y6aBv7IcYaO4PfR2iEb3Afxv7Ga622WNQb5218bk7RkRF10Gf7e4pWd7er-UOyfLxfzG-WiaQ0jQlVmTZllQFUlVK01GzYQypGgeZFplUOZp0brWShFZMlhQpEwYwqi9TkWUGn6GI3tvPutdch8sYGqetatNr1gQODihYkI2yglzsqvQvBa8M7bxvhtxwIH9PiwPdpDfZqZ4O08evP3_jN-R_IO2X-w38nfwKhCHir</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419370504</pqid></control><display><type>article</type><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><source>AIP Journals Complete</source><creator>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</creator><creatorcontrib>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</creatorcontrib><description>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/1.4800194</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><ispartof>Journal of renewable and sustainable energy, 2013-03, Vol.5 (2)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</citedby><cites>FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/1.4800194$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Song, M. X.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><title>Journal of renewable and sustainable energy</title><description>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</description><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEQB_AgCtbqwW-QowpbM5vs6yjFR6HgpeAxpHnUyO5mTbJK_fTu2qKC4CXJMD-GyR-hcyAzIDm9hhkrCYGKHaDJcEJSEEgPf72P0UkIL4TkKcnSCVo82Vbh2Pu1bTXuXLDRuta2G-y6aBv7IcYaO4PfR2iEb3Afxv7Ga622WNQb5218bk7RkRF10Gf7e4pWd7er-UOyfLxfzG-WiaQ0jQlVmTZllQFUlVK01GzYQypGgeZFplUOZp0brWShFZMlhQpEwYwqi9TkWUGn6GI3tvPutdch8sYGqetatNr1gQODihYkI2yglzsqvQvBa8M7bxvhtxwIH9PiwPdpDfZqZ4O08evP3_jN-R_IO2X-w38nfwKhCHir</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Chen, K.</creator><creator>Song, M. X.</creator><creator>He, Z. Y.</creator><creator>Zhang, X.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20130301</creationdate><title>Wind turbine positioning optimization of wind farm using greedy algorithm</title><author>Chen, K. ; Song, M. X. ; He, Z. Y. ; Zhang, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-3d5ef8951199dd38e4052cd4313675ed61fb6fedc7ed4c83191a74fd872f6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Song, M. X.</creatorcontrib><creatorcontrib>He, Z. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, K.</au><au>Song, M. X.</au><au>He, Z. Y.</au><au>Zhang, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind turbine positioning optimization of wind farm using greedy algorithm</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>5</volume><issue>2</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>In this paper, the greedy algorithm is used to solve the wind turbine positioning optimization problem. Various models are employed to describe the problem, including the linear wake model, the power-law power curve model with power control mechanisms, Weibull distribution, and the profit function. The incremental calculation method is developed to consider the influence of the adding turbine on other turbines in the wind farm and accelerate the wind power assessment process. The repeated adjustment strategy is used to improve the optimized result. Three cases with simple models and a case with realistic models are used to test the present method. The results show that the greedy algorithm with repeated adjustment can obtain a better result than bionic algorithm and genetic algorithm in less computational time. The proposed greedy algorithm is an effective solution strategy for wind turbine positioning optimization.</abstract><doi>10.1063/1.4800194</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2013-03, Vol.5 (2)
issn 1941-7012
1941-7012
language eng
recordid cdi_scitation_primary_10_1063_1_4800194
source AIP Journals Complete
title Wind turbine positioning optimization of wind farm using greedy algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20turbine%20positioning%20optimization%20of%20wind%20farm%20using%20greedy%20algorithm&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Chen,%20K.&rft.date=2013-03-01&rft.volume=5&rft.issue=2&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/1.4800194&rft_dat=%3Cproquest_scita%3E1419370504%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419370504&rft_id=info:pmid/&rfr_iscdi=true