A miniature Joule-Thomson cooler for optical detectors in space

The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage–detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2012-04, Vol.83 (4), p.045117-045117-6
Hauptverfasser: Derking, J. H., Holland, H. J., Tirolien, T., ter Brake, H. J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 045117-6
container_issue 4
container_start_page 045117
container_title Review of scientific instruments
container_volume 83
creator Derking, J. H.
Holland, H. J.
Tirolien, T.
ter Brake, H. J. M.
description The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage–detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.
doi_str_mv 10.1063/1.4705988
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_4705988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011538400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-50ac8457b3b318e15650f8c22f63308c259af1b03119c0c7ba9b416d5e96691d3</originalsourceid><addsrcrecordid>eNqFkU9LwzAYh4Mobk4PfgHpUYXOvE2TJhdliH8ZeJnnkKYpq7RNTVrBb290cx5k-l7yHp48Cb8fQseAp4AZuYBpmmEqON9BY8BcxBlLyC4aY0zSmGUpH6ED719wGAqwj0ZJQqmgnI3R1SxqqrZS_eBM9GiH2sSLpW28bSNtbW1cVFoX2a6vtKqjwvRG99b5qGoj3yltDtFeqWpvjtbnBD3f3iyu7-P5093D9Wwe6_BiH1OsNE9plpOcADdAGcUl10lSMkJwWKhQJeSYAAiNdZYrkafACmoEYwIKMkGnK2_n7OtgfC-bymtT16o1dvASWAaUMCyS_9E0EZyJJEv_RzEEK09DkBN0tkK1s947U8rOVY1y7wGSny1IkOsWAnuy1g55Y4oN-R17AC5XgNdVr_rKttttM7kpSH4VJBfLIDjfJniz7uey7IryL_j33z8A03uwTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011538400</pqid></control><display><type>article</type><title>A miniature Joule-Thomson cooler for optical detectors in space</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Derking, J. H. ; Holland, H. J. ; Tirolien, T. ; ter Brake, H. J. M.</creator><creatorcontrib>Derking, J. H. ; Holland, H. J. ; Tirolien, T. ; ter Brake, H. J. M.</creatorcontrib><description>The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage–detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.4705988</identifier><identifier>PMID: 22559586</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Conduction ; Coolers ; Cooling ; Detectors ; Heat transfer ; Micromachining ; Micromechanics ; Wiring</subject><ispartof>Review of scientific instruments, 2012-04, Vol.83 (4), p.045117-045117-6</ispartof><rights>American Institute of Physics</rights><rights>2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-50ac8457b3b318e15650f8c22f63308c259af1b03119c0c7ba9b416d5e96691d3</citedby><cites>FETCH-LOGICAL-c511t-50ac8457b3b318e15650f8c22f63308c259af1b03119c0c7ba9b416d5e96691d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.4705988$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22559586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derking, J. H.</creatorcontrib><creatorcontrib>Holland, H. J.</creatorcontrib><creatorcontrib>Tirolien, T.</creatorcontrib><creatorcontrib>ter Brake, H. J. M.</creatorcontrib><title>A miniature Joule-Thomson cooler for optical detectors in space</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage–detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.</description><subject>Conduction</subject><subject>Coolers</subject><subject>Cooling</subject><subject>Detectors</subject><subject>Heat transfer</subject><subject>Micromachining</subject><subject>Micromechanics</subject><subject>Wiring</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAYh4Mobk4PfgHpUYXOvE2TJhdliH8ZeJnnkKYpq7RNTVrBb290cx5k-l7yHp48Cb8fQseAp4AZuYBpmmEqON9BY8BcxBlLyC4aY0zSmGUpH6ED719wGAqwj0ZJQqmgnI3R1SxqqrZS_eBM9GiH2sSLpW28bSNtbW1cVFoX2a6vtKqjwvRG99b5qGoj3yltDtFeqWpvjtbnBD3f3iyu7-P5093D9Wwe6_BiH1OsNE9plpOcADdAGcUl10lSMkJwWKhQJeSYAAiNdZYrkafACmoEYwIKMkGnK2_n7OtgfC-bymtT16o1dvASWAaUMCyS_9E0EZyJJEv_RzEEK09DkBN0tkK1s947U8rOVY1y7wGSny1IkOsWAnuy1g55Y4oN-R17AC5XgNdVr_rKttttM7kpSH4VJBfLIDjfJniz7uey7IryL_j33z8A03uwTw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Derking, J. H.</creator><creator>Holland, H. J.</creator><creator>Tirolien, T.</creator><creator>ter Brake, H. J. M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120401</creationdate><title>A miniature Joule-Thomson cooler for optical detectors in space</title><author>Derking, J. H. ; Holland, H. J. ; Tirolien, T. ; ter Brake, H. J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-50ac8457b3b318e15650f8c22f63308c259af1b03119c0c7ba9b416d5e96691d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Conduction</topic><topic>Coolers</topic><topic>Cooling</topic><topic>Detectors</topic><topic>Heat transfer</topic><topic>Micromachining</topic><topic>Micromechanics</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derking, J. H.</creatorcontrib><creatorcontrib>Holland, H. J.</creatorcontrib><creatorcontrib>Tirolien, T.</creatorcontrib><creatorcontrib>ter Brake, H. J. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derking, J. H.</au><au>Holland, H. J.</au><au>Tirolien, T.</au><au>ter Brake, H. J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A miniature Joule-Thomson cooler for optical detectors in space</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>83</volume><issue>4</issue><spage>045117</spage><epage>045117-6</epage><pages>045117-045117-6</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage–detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22559586</pmid><doi>10.1063/1.4705988</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2012-04, Vol.83 (4), p.045117-045117-6
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_4705988
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Conduction
Coolers
Cooling
Detectors
Heat transfer
Micromachining
Micromechanics
Wiring
title A miniature Joule-Thomson cooler for optical detectors in space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20miniature%20Joule-Thomson%20cooler%20for%20optical%20detectors%20in%20space&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Derking,%20J.%20H.&rft.date=2012-04-01&rft.volume=83&rft.issue=4&rft.spage=045117&rft.epage=045117-6&rft.pages=045117-045117-6&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.4705988&rft_dat=%3Cproquest_scita%3E1011538400%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011538400&rft_id=info:pmid/22559586&rfr_iscdi=true