Gröbner bases for finite-temperature quantum computing and their complexity
Following the recent approach of using order domains to construct Gröbner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be intr...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2011-11, Vol.52 (11), p.112203-112203-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112203-8 |
---|---|
container_issue | 11 |
container_start_page | 112203 |
container_title | Journal of mathematical physics |
container_volume | 52 |
creator | Crompton, P. R. |
description | Following the recent approach of using order domains to construct Gröbner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Gröbner basis, the complexity class of this problem is bounded quantum polynomial. |
doi_str_mv | 10.1063/1.3660379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3660379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526485281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-cbeec7579b320c089c132736e6a18b6e2be7ed1d1a48a5c9e8ba777d0803b77b3</originalsourceid><addsrcrecordid>eNp9kN1KwzAYQIMoOKcXvkERvFCoJk2bpDeCDJ3CwBu9Dkn6VTO2tktScS_mC_hiZj_sRuZVIJzvJN9B6JzgG4IZvSU3lDFMeXmABgSLMuWsEIdogHGWpVkuxDE68X6KMSEizwdoMnY_37oBl2jlwSd165LaNjZAGmDegVOhd5AsetWEfp6Ydt71wTbviWqqJHyAdeu7GXzZsDxFR7WaeTjbnkP09vjwOnpKJy_j59H9JDWUk5AaDWB4wUtNM2ziJw2hGacMmCJCM8g0cKhIRVQuVGFKEFpxzissMNWcazpEFxtv59pFDz7Iadu7Jj4pS8xLwjgmEbraQMa13juoZefsXLmlJFiuWkkit60ie7kVKm_UrHaqMdbvBrKC4iIGjNzdhvPGBhVs2-yXjp1cdZXrrjJ2lbWNgut9gs9I7IZlV9X_wX9X-AU-Zpt1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907916701</pqid></control><display><type>article</type><title>Gröbner bases for finite-temperature quantum computing and their complexity</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Crompton, P. R.</creator><creatorcontrib>Crompton, P. R.</creatorcontrib><description>Following the recent approach of using order domains to construct Gröbner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Gröbner basis, the complexity class of this problem is bounded quantum polynomial.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3660379</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Algebra ; Exact sciences and technology ; Mathematical methods in physics ; Mathematical problems ; Mathematics ; Physics ; Polynomials ; Quantum physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2011-11, Vol.52 (11), p.112203-112203-8</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-cbeec7579b320c089c132736e6a18b6e2be7ed1d1a48a5c9e8ba777d0803b77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3660379$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25305022$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crompton, P. R.</creatorcontrib><title>Gröbner bases for finite-temperature quantum computing and their complexity</title><title>Journal of mathematical physics</title><description>Following the recent approach of using order domains to construct Gröbner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Gröbner basis, the complexity class of this problem is bounded quantum polynomial.</description><subject>Algebra</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Quantum physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KwzAYQIMoOKcXvkERvFCoJk2bpDeCDJ3CwBu9Dkn6VTO2tktScS_mC_hiZj_sRuZVIJzvJN9B6JzgG4IZvSU3lDFMeXmABgSLMuWsEIdogHGWpVkuxDE68X6KMSEizwdoMnY_37oBl2jlwSd165LaNjZAGmDegVOhd5AsetWEfp6Ydt71wTbviWqqJHyAdeu7GXzZsDxFR7WaeTjbnkP09vjwOnpKJy_j59H9JDWUk5AaDWB4wUtNM2ziJw2hGacMmCJCM8g0cKhIRVQuVGFKEFpxzissMNWcazpEFxtv59pFDz7Iadu7Jj4pS8xLwjgmEbraQMa13juoZefsXLmlJFiuWkkit60ie7kVKm_UrHaqMdbvBrKC4iIGjNzdhvPGBhVs2-yXjp1cdZXrrjJ2lbWNgut9gs9I7IZlV9X_wX9X-AU-Zpt1</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Crompton, P. R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Gröbner bases for finite-temperature quantum computing and their complexity</title><author>Crompton, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-cbeec7579b320c089c132736e6a18b6e2be7ed1d1a48a5c9e8ba777d0803b77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Quantum physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crompton, P. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crompton, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gröbner bases for finite-temperature quantum computing and their complexity</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>52</volume><issue>11</issue><spage>112203</spage><epage>112203-8</epage><pages>112203-112203-8</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Following the recent approach of using order domains to construct Gröbner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Gröbner basis, the complexity class of this problem is bounded quantum polynomial.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3660379</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2011-11, Vol.52 (11), p.112203-112203-8 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_3660379 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Algebra Exact sciences and technology Mathematical methods in physics Mathematical problems Mathematics Physics Polynomials Quantum physics Sciences and techniques of general use |
title | Gröbner bases for finite-temperature quantum computing and their complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gr%C3%B6bner%20bases%20for%20finite-temperature%20quantum%20computing%20and%20their%20complexity&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Crompton,%20P.%20R.&rft.date=2011-11-01&rft.volume=52&rft.issue=11&rft.spage=112203&rft.epage=112203-8&rft.pages=112203-112203-8&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3660379&rft_dat=%3Cproquest_scita%3E2526485281%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907916701&rft_id=info:pmid/&rfr_iscdi=true |