Sparse one-dimensional discrete Dirac operators II: Spectral properties
We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral tra...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2011-07, Vol.52 (7), p.073501-073501-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 073501-21 |
---|---|
container_issue | 7 |
container_start_page | 073501 |
container_title | Journal of mathematical physics |
container_volume | 52 |
creator | Carvalho, S. L. de Oliveira, C. R. Prado, R. A. |
description | We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral transition from point to singular continuous. |
doi_str_mv | 10.1063/1.3600536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3600536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421710231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-b0b572443b988187f9f0667bb98ccb8a85d31b46f96e54f9d4ee2840513acf713</originalsourceid><addsrcrecordid>eNp9kEFLwzAYQIMoOKcH_0ERPCh0Jk2aph4EmToLAw_Tc0jTBDK2tubLBP-9GR3zIPMUQl5evjyELgmeEMzpHZlQjnFO-REaESzKtOC5OEYjjLMszZgQp-gMYIkxIYKxEZoteuXBJF1r0satTQuua9UqaRxob4JJnpxXOul641XoPCRVdZ8seqODj1TvtwfBGThHJ1atwFzs1jH6eHl-n76m87dZNX2cp5oxHtIa13mRMUbrUggiCltazHlRx63WtVAibyipGbclNzmzZcOMyQTDOaFK24LQMboavPHpz42BIJfdxseJQQqRUcxJVkToZoC07wC8sbL3bq38tyRYbjNJIneZInu9EyrQamW9arWD_YU4K8NlNI_Rw8CBdkGFWOmwdGgqY1O5bxoFt4cEX53_vSz7xv4H__3CD3oOl40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>882306127</pqid></control><display><type>article</type><title>Sparse one-dimensional discrete Dirac operators II: Spectral properties</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Carvalho, S. L. ; de Oliveira, C. R. ; Prado, R. A.</creator><creatorcontrib>Carvalho, S. L. ; de Oliveira, C. R. ; Prado, R. A.</creatorcontrib><description>We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral transition from point to singular continuous.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3600536</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Physics ; Quantum physics ; Schrodinger equation ; Sciences and techniques of general use ; Spectrum analysis</subject><ispartof>Journal of mathematical physics, 2011-07, Vol.52 (7), p.073501-073501-21</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-b0b572443b988187f9f0667bb98ccb8a85d31b46f96e54f9d4ee2840513acf713</citedby><cites>FETCH-LOGICAL-c446t-b0b572443b988187f9f0667bb98ccb8a85d31b46f96e54f9d4ee2840513acf713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3600536$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24440982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, S. L.</creatorcontrib><creatorcontrib>de Oliveira, C. R.</creatorcontrib><creatorcontrib>Prado, R. A.</creatorcontrib><title>Sparse one-dimensional discrete Dirac operators II: Spectral properties</title><title>Journal of mathematical physics</title><description>We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral transition from point to singular continuous.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Sciences and techniques of general use</subject><subject>Spectrum analysis</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYQIMoOKcH_0ERPCh0Jk2aph4EmToLAw_Tc0jTBDK2tubLBP-9GR3zIPMUQl5evjyELgmeEMzpHZlQjnFO-REaESzKtOC5OEYjjLMszZgQp-gMYIkxIYKxEZoteuXBJF1r0satTQuua9UqaRxob4JJnpxXOul641XoPCRVdZ8seqODj1TvtwfBGThHJ1atwFzs1jH6eHl-n76m87dZNX2cp5oxHtIa13mRMUbrUggiCltazHlRx63WtVAibyipGbclNzmzZcOMyQTDOaFK24LQMboavPHpz42BIJfdxseJQQqRUcxJVkToZoC07wC8sbL3bq38tyRYbjNJIneZInu9EyrQamW9arWD_YU4K8NlNI_Rw8CBdkGFWOmwdGgqY1O5bxoFt4cEX53_vSz7xv4H__3CD3oOl40</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Carvalho, S. L.</creator><creator>de Oliveira, C. R.</creator><creator>Prado, R. A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20110701</creationdate><title>Sparse one-dimensional discrete Dirac operators II: Spectral properties</title><author>Carvalho, S. L. ; de Oliveira, C. R. ; Prado, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-b0b572443b988187f9f0667bb98ccb8a85d31b46f96e54f9d4ee2840513acf713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Sciences and techniques of general use</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, S. L.</creatorcontrib><creatorcontrib>de Oliveira, C. R.</creatorcontrib><creatorcontrib>Prado, R. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, S. L.</au><au>de Oliveira, C. R.</au><au>Prado, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse one-dimensional discrete Dirac operators II: Spectral properties</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>52</volume><issue>7</issue><spage>073501</spage><epage>073501-21</epage><pages>073501-073501-21</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral transition from point to singular continuous.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3600536</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2011-07, Vol.52 (7), p.073501-073501-21 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_3600536 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Exact sciences and technology Mathematical methods in physics Mathematics Physics Quantum physics Schrodinger equation Sciences and techniques of general use Spectrum analysis |
title | Sparse one-dimensional discrete Dirac operators II: Spectral properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20one-dimensional%20discrete%20Dirac%20operators%20II:%20Spectral%20properties&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Carvalho,%20S.%20L.&rft.date=2011-07-01&rft.volume=52&rft.issue=7&rft.spage=073501&rft.epage=073501-21&rft.pages=073501-073501-21&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3600536&rft_dat=%3Cproquest_scita%3E2421710231%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=882306127&rft_id=info:pmid/&rfr_iscdi=true |