Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim
We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relativ...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2011-07, Vol.23 (7), p.071901-071901-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 071901-19 |
---|---|
container_issue | 7 |
container_start_page | 071901 |
container_title | Physics of fluids (1994) |
container_volume | 23 |
creator | Swan, James W. Brady, John F. Moore, Rachel S. |
description | We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies
(e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations.
The swimming body is composed of many spherical particles constrained to form an assembly
that deforms via relative motion of its constituent particles. The resistance tensor describing the
hydrodynamic
interactions among the individual particles maps directly onto that for the assembly.
Specifying a particular swimming gait and imposing the condition that the swimming body is
force- and torque-free determine the propulsive speed. The body’s translational and
rotational velocities computed via this methodology are identical in form to that
from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate
the generality of the method through simulations of a wide array of swimming bodies:
pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical
swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale
deformation. An open source code is a part of the supplementary material and can be used
to simulate the swimming of a body with arbitrary geometry and swimming gait. |
doi_str_mv | 10.1063/1.3594790 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3594790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3594790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUQInRxFpd-AdsXGgyFQYKzMbE1GdS04W6JpSHRafDBKY2_XunmfpImrqChHMPcAA4xWiAESOXeECGBeUF2gM9jESRccbY_nrPUcYYwYfgKKV3hBApctYD9ikYW_rqDc5WJgazqtTca5hs6bI6hnpRJh8quPTNDD434cMmryp402FpACcRNlbp2dqwfQ6bANPSz4_BgVNlsiebtQ9e725fRg_ZeHL_OLoeZ5riosmc4MgZoTnWOVKaF1PUPlsYwTXljhVEUCEc1Tke5goZwXR7NXNcWzZUZGpIH5x3Xh1DStE6WUc_V3ElMZLrPhLLTZ-WPevYWiWtShdVpX36GcgppVjktOWuOi5p36imrbFb-h1T_onZCi52CT5D_B2WtXH_wdtf-AL5gJhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Swan, James W. ; Brady, John F. ; Moore, Rachel S.</creator><creatorcontrib>Swan, James W. ; Brady, John F. ; Moore, Rachel S. ; ChE 174</creatorcontrib><description>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies
(e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations.
The swimming body is composed of many spherical particles constrained to form an assembly
that deforms via relative motion of its constituent particles. The resistance tensor describing the
hydrodynamic
interactions among the individual particles maps directly onto that for the assembly.
Specifying a particular swimming gait and imposing the condition that the swimming body is
force- and torque-free determine the propulsive speed. The body’s translational and
rotational velocities computed via this methodology are identical in form to that
from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate
the generality of the method through simulations of a wide array of swimming bodies:
pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical
swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale
deformation. An open source code is a part of the supplementary material and can be used
to simulate the swimming of a body with arbitrary geometry and swimming gait.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3594790</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Biological and medical sciences ; Cell physiology ; Fundamental and applied biological sciences. Psychology ; Molecular and cellular biology ; Motility and taxis</subject><ispartof>Physics of fluids (1994), 2011-07, Vol.23 (7), p.071901-071901-19</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</citedby><cites>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24441824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brady, John F.</creatorcontrib><creatorcontrib>Moore, Rachel S.</creatorcontrib><creatorcontrib>ChE 174</creatorcontrib><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><title>Physics of fluids (1994)</title><description>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies
(e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations.
The swimming body is composed of many spherical particles constrained to form an assembly
that deforms via relative motion of its constituent particles. The resistance tensor describing the
hydrodynamic
interactions among the individual particles maps directly onto that for the assembly.
Specifying a particular swimming gait and imposing the condition that the swimming body is
force- and torque-free determine the propulsive speed. The body’s translational and
rotational velocities computed via this methodology are identical in form to that
from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate
the generality of the method through simulations of a wide array of swimming bodies:
pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical
swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale
deformation. An open source code is a part of the supplementary material and can be used
to simulate the swimming of a body with arbitrary geometry and swimming gait.</description><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUQInRxFpd-AdsXGgyFQYKzMbE1GdS04W6JpSHRafDBKY2_XunmfpImrqChHMPcAA4xWiAESOXeECGBeUF2gM9jESRccbY_nrPUcYYwYfgKKV3hBApctYD9ikYW_rqDc5WJgazqtTca5hs6bI6hnpRJh8quPTNDD434cMmryp402FpACcRNlbp2dqwfQ6bANPSz4_BgVNlsiebtQ9e725fRg_ZeHL_OLoeZ5riosmc4MgZoTnWOVKaF1PUPlsYwTXljhVEUCEc1Tke5goZwXR7NXNcWzZUZGpIH5x3Xh1DStE6WUc_V3ElMZLrPhLLTZ-WPevYWiWtShdVpX36GcgppVjktOWuOi5p36imrbFb-h1T_onZCi52CT5D_B2WtXH_wdtf-AL5gJhp</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Swan, James W.</creator><creator>Brady, John F.</creator><creator>Moore, Rachel S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110701</creationdate><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><author>Swan, James W. ; Brady, John F. ; Moore, Rachel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brady, John F.</creatorcontrib><creatorcontrib>Moore, Rachel S.</creatorcontrib><creatorcontrib>ChE 174</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swan, James W.</au><au>Brady, John F.</au><au>Moore, Rachel S.</au><aucorp>ChE 174</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>23</volume><issue>7</issue><spage>071901</spage><epage>071901-19</epage><pages>071901-071901-19</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies
(e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations.
The swimming body is composed of many spherical particles constrained to form an assembly
that deforms via relative motion of its constituent particles. The resistance tensor describing the
hydrodynamic
interactions among the individual particles maps directly onto that for the assembly.
Specifying a particular swimming gait and imposing the condition that the swimming body is
force- and torque-free determine the propulsive speed. The body’s translational and
rotational velocities computed via this methodology are identical in form to that
from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate
the generality of the method through simulations of a wide array of swimming bodies:
pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical
swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale
deformation. An open source code is a part of the supplementary material and can be used
to simulate the swimming of a body with arbitrary geometry and swimming gait.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3594790</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2011-07, Vol.23 (7), p.071901-071901-19 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_3594790 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Biological and medical sciences Cell physiology Fundamental and applied biological sciences. Psychology Molecular and cellular biology Motility and taxis |
title | Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20hydrodynamic%20self-propulsion%20with%20Stokesian%20Dynamics.%20Or%20teaching%20Stokesian%20Dynamics%20to%20swim&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Swan,%20James%20W.&rft.aucorp=ChE%20174&rft.date=2011-07-01&rft.volume=23&rft.issue=7&rft.spage=071901&rft.epage=071901-19&rft.pages=071901-071901-19&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3594790&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3594790%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |