Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2011-07, Vol.23 (7), p.071901-071901-19
Hauptverfasser: Swan, James W., Brady, John F., Moore, Rachel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 071901-19
container_issue 7
container_start_page 071901
container_title Physics of fluids (1994)
container_volume 23
creator Swan, James W.
Brady, John F.
Moore, Rachel S.
description We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.
doi_str_mv 10.1063/1.3594790
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3594790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3594790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</originalsourceid><addsrcrecordid>eNp9kMtOAyEUQInRxFpd-AdsXGgyFQYKzMbE1GdS04W6JpSHRafDBKY2_XunmfpImrqChHMPcAA4xWiAESOXeECGBeUF2gM9jESRccbY_nrPUcYYwYfgKKV3hBApctYD9ikYW_rqDc5WJgazqtTca5hs6bI6hnpRJh8quPTNDD434cMmryp402FpACcRNlbp2dqwfQ6bANPSz4_BgVNlsiebtQ9e725fRg_ZeHL_OLoeZ5riosmc4MgZoTnWOVKaF1PUPlsYwTXljhVEUCEc1Tke5goZwXR7NXNcWzZUZGpIH5x3Xh1DStE6WUc_V3ElMZLrPhLLTZ-WPevYWiWtShdVpX36GcgppVjktOWuOi5p36imrbFb-h1T_onZCi52CT5D_B2WtXH_wdtf-AL5gJhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Swan, James W. ; Brady, John F. ; Moore, Rachel S.</creator><creatorcontrib>Swan, James W. ; Brady, John F. ; Moore, Rachel S. ; ChE 174</creatorcontrib><description>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3594790</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Biological and medical sciences ; Cell physiology ; Fundamental and applied biological sciences. Psychology ; Molecular and cellular biology ; Motility and taxis</subject><ispartof>Physics of fluids (1994), 2011-07, Vol.23 (7), p.071901-071901-19</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</citedby><cites>FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24441824$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brady, John F.</creatorcontrib><creatorcontrib>Moore, Rachel S.</creatorcontrib><creatorcontrib>ChE 174</creatorcontrib><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><title>Physics of fluids (1994)</title><description>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.</description><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUQInRxFpd-AdsXGgyFQYKzMbE1GdS04W6JpSHRafDBKY2_XunmfpImrqChHMPcAA4xWiAESOXeECGBeUF2gM9jESRccbY_nrPUcYYwYfgKKV3hBApctYD9ikYW_rqDc5WJgazqtTca5hs6bI6hnpRJh8quPTNDD434cMmryp402FpACcRNlbp2dqwfQ6bANPSz4_BgVNlsiebtQ9e725fRg_ZeHL_OLoeZ5riosmc4MgZoTnWOVKaF1PUPlsYwTXljhVEUCEc1Tke5goZwXR7NXNcWzZUZGpIH5x3Xh1DStE6WUc_V3ElMZLrPhLLTZ-WPevYWiWtShdVpX36GcgppVjktOWuOi5p36imrbFb-h1T_onZCi52CT5D_B2WtXH_wdtf-AL5gJhp</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Swan, James W.</creator><creator>Brady, John F.</creator><creator>Moore, Rachel S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110701</creationdate><title>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</title><author>Swan, James W. ; Brady, John F. ; Moore, Rachel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f870fd8c71c20ac79b00708d87c47f6938488f4c2152a0d86ceac6f7ce65a3bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swan, James W.</creatorcontrib><creatorcontrib>Brady, John F.</creatorcontrib><creatorcontrib>Moore, Rachel S.</creatorcontrib><creatorcontrib>ChE 174</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swan, James W.</au><au>Brady, John F.</au><au>Moore, Rachel S.</au><aucorp>ChE 174</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>23</volume><issue>7</issue><spage>071901</spage><epage>071901-19</epage><pages>071901-071901-19</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body’s translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor’s helical swimmer, Purcell’s three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3594790</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2011-07, Vol.23 (7), p.071901-071901-19
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_3594790
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Biological and medical sciences
Cell physiology
Fundamental and applied biological sciences. Psychology
Molecular and cellular biology
Motility and taxis
title Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20hydrodynamic%20self-propulsion%20with%20Stokesian%20Dynamics.%20Or%20teaching%20Stokesian%20Dynamics%20to%20swim&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Swan,%20James%20W.&rft.aucorp=ChE%20174&rft.date=2011-07-01&rft.volume=23&rft.issue=7&rft.spage=071901&rft.epage=071901-19&rft.pages=071901-071901-19&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3594790&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3594790%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true