Growth and characteristics of GaInN/GaInN multiple quantum welllight-emitting diodes
We demonstrate GaInN multiple quantum well (MQW) light-emitting diodes (LEDs) having ternary GaInN quantum barriers (QBs) instead of conventional binary GaN QBs for a reduced polarization mismatch between QWs and QBs and an additional separate confinement of carriers to the MQW active region. In com...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-03, Vol.107 (6), p.063102-063102-6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate GaInN multiple quantum well (MQW) light-emitting diodes (LEDs) having ternary GaInN quantum barriers (QBs) instead of conventional binary GaN QBs for a reduced polarization mismatch between QWs and QBs and an additional separate confinement of carriers to the MQW active region. In comparison with GaInN LEDs with conventional GaN QBs, the GaInN/GaInN LEDs show a reduced blueshift of the peak wavelength with increasing injection current and a reduced forward voltage. In addition, we investigate the density of pits emerging on top of the MQW layer that are correlated with V-defects and act as a path for the reverse leakage current. The GaInN/GaInN MQW structure has a lower pit density than the GaInN/GaN MQW structure as well as a lower reverse leakage current. Finally, the GaInN/GaInN MQW LEDs show higher light output power and external quantum efficiency at high injection currents compared to the conventional GaInN/GaN MQW LEDs. We attribute these results to the reduced polarization mismatch and the reduced lattice mismatch in the GaInN/GaInN MQW active region. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3327425 |