Experimental realization of nearly steady-state toroidal electron plasmasa

Electron plasmas with densities of 5 × 10 6   cm − 3 are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio ( R 0 / a ≳ 10 ) partially toroidal trap (270° arc, B 0 = 670   G ). The m = 1 diocotron mode is launched and detected using isolated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2009-05, Vol.16 (5)
Hauptverfasser: Stoneking, M. R., Marler, J. P., Ha, B. N., Smoniewski, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 16
creator Stoneking, M. R.
Marler, J. P.
Ha, B. N.
Smoniewski, J.
description Electron plasmas with densities of 5 × 10 6   cm − 3 are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio ( R 0 / a ≳ 10 ) partially toroidal trap (270° arc, B 0 = 670   G ). The m = 1 diocotron mode is launched and detected using isolated segments of a fully sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( ≈ 3   s ) approaches the theoretical limit ( ≈ 6   s ) set by the magnetic pumping transport mechanism of Crooks and O’Neil [Phys. Plasmas 3, 2533 (1996)]. We also present equilibrium modeling and numerical simulations of the toroidal m = 1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m = 2 mode frequency and development of a strategy for making a transition to fully toroidal confinement.
doi_str_mv 10.1063/1.3118624
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3118624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_31186243</originalsourceid><addsrcrecordid>eNqVjj0LwjAURYMoWD8G_0FmoZrYmtZZKuLs4BYe7StE0qYkQay_3lYKboLTvcPh3EvIirMNZyLa8k3EeSp28YgEnKWHMBFJPO57wkIh4tuUzJy7M8ZisU8DcsmeDVpVYe1BU4ug1Qu8MjU1Ja0RrG6p8whFGzoPHqk31qiiY1Fj7m0HNhpcBQ4WZFKCdrgcck7Wp-x6PIcuV_7jlE23BLaVnMn-reRyeBv9gB_GfkHZFGX0l_kN411VAA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental realization of nearly steady-state toroidal electron plasmasa</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Stoneking, M. R. ; Marler, J. P. ; Ha, B. N. ; Smoniewski, J.</creator><creatorcontrib>Stoneking, M. R. ; Marler, J. P. ; Ha, B. N. ; Smoniewski, J.</creatorcontrib><description>Electron plasmas with densities of 5 × 10 6   cm − 3 are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio ( R 0 / a ≳ 10 ) partially toroidal trap (270° arc, B 0 = 670   G ). The m = 1 diocotron mode is launched and detected using isolated segments of a fully sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( ≈ 3   s ) approaches the theoretical limit ( ≈ 6   s ) set by the magnetic pumping transport mechanism of Crooks and O’Neil [Phys. Plasmas 3, 2533 (1996)]. We also present equilibrium modeling and numerical simulations of the toroidal m = 1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m = 2 mode frequency and development of a strategy for making a transition to fully toroidal confinement.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3118624</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><ispartof>Physics of plasmas, 2009-05, Vol.16 (5)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3118624$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76353,76359</link.rule.ids></links><search><creatorcontrib>Stoneking, M. R.</creatorcontrib><creatorcontrib>Marler, J. P.</creatorcontrib><creatorcontrib>Ha, B. N.</creatorcontrib><creatorcontrib>Smoniewski, J.</creatorcontrib><title>Experimental realization of nearly steady-state toroidal electron plasmasa</title><title>Physics of plasmas</title><description>Electron plasmas with densities of 5 × 10 6   cm − 3 are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio ( R 0 / a ≳ 10 ) partially toroidal trap (270° arc, B 0 = 670   G ). The m = 1 diocotron mode is launched and detected using isolated segments of a fully sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( ≈ 3   s ) approaches the theoretical limit ( ≈ 6   s ) set by the magnetic pumping transport mechanism of Crooks and O’Neil [Phys. Plasmas 3, 2533 (1996)]. We also present equilibrium modeling and numerical simulations of the toroidal m = 1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m = 2 mode frequency and development of a strategy for making a transition to fully toroidal confinement.</description><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjj0LwjAURYMoWD8G_0FmoZrYmtZZKuLs4BYe7StE0qYkQay_3lYKboLTvcPh3EvIirMNZyLa8k3EeSp28YgEnKWHMBFJPO57wkIh4tuUzJy7M8ZisU8DcsmeDVpVYe1BU4ug1Qu8MjU1Ja0RrG6p8whFGzoPHqk31qiiY1Fj7m0HNhpcBQ4WZFKCdrgcck7Wp-x6PIcuV_7jlE23BLaVnMn-reRyeBv9gB_GfkHZFGX0l_kN411VAA</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Stoneking, M. R.</creator><creator>Marler, J. P.</creator><creator>Ha, B. N.</creator><creator>Smoniewski, J.</creator><scope/></search><sort><creationdate>200905</creationdate><title>Experimental realization of nearly steady-state toroidal electron plasmasa</title><author>Stoneking, M. R. ; Marler, J. P. ; Ha, B. N. ; Smoniewski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_31186243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoneking, M. R.</creatorcontrib><creatorcontrib>Marler, J. P.</creatorcontrib><creatorcontrib>Ha, B. N.</creatorcontrib><creatorcontrib>Smoniewski, J.</creatorcontrib><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoneking, M. R.</au><au>Marler, J. P.</au><au>Ha, B. N.</au><au>Smoniewski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental realization of nearly steady-state toroidal electron plasmasa</atitle><jtitle>Physics of plasmas</jtitle><date>2009-05</date><risdate>2009</risdate><volume>16</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Electron plasmas with densities of 5 × 10 6   cm − 3 are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio ( R 0 / a ≳ 10 ) partially toroidal trap (270° arc, B 0 = 670   G ). The m = 1 diocotron mode is launched and detected using isolated segments of a fully sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( ≈ 3   s ) approaches the theoretical limit ( ≈ 6   s ) set by the magnetic pumping transport mechanism of Crooks and O’Neil [Phys. Plasmas 3, 2533 (1996)]. We also present equilibrium modeling and numerical simulations of the toroidal m = 1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m = 2 mode frequency and development of a strategy for making a transition to fully toroidal confinement.</abstract><doi>10.1063/1.3118624</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2009-05, Vol.16 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_3118624
source AIP Journals Complete; AIP Digital Archive
title Experimental realization of nearly steady-state toroidal electron plasmasa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20realization%20of%20nearly%20steady-state%20toroidal%20electron%20plasmasa&rft.jtitle=Physics%20of%20plasmas&rft.au=Stoneking,%20M.%20R.&rft.date=2009-05&rft.volume=16&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3118624&rft_dat=%3Cscitation%3Epop%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true