Thermal conductivity of molten alkali halides: Temperatureand density dependence

The thermal conductivities of a series of molten alkali halides have been evaluated by using molecular dynamics simulation within the framework of Fumi-Tosi potential models. Although the calculated results showed 0%-50% larger values than experimental results depending on system, they are in agreem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2009-01, Vol.130 (4), p.044505-044505-5
Hauptverfasser: Ohtori, Norikazu, Oono, Takuya, Takase, Keiichi
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044505-5
container_issue 4
container_start_page 044505
container_title The Journal of chemical physics
container_volume 130
creator Ohtori, Norikazu
Oono, Takuya
Takase, Keiichi
description The thermal conductivities of a series of molten alkali halides have been evaluated by using molecular dynamics simulation within the framework of Fumi-Tosi potential models. Although the calculated results showed 0%-50% larger values than experimental results depending on system, they are in agreement with each other in showing both negative temperature and ionic mass dependence. In order to clarify the cause of the negative temperature dependence in more detail, the thermal conductivity under constant temperature or constant density was evaluated for all alkali chlorides and all sodium halides. The calculations reveal that the thermal conductivity depends strongly on density but only weakly on temperature. While the integrated value of the autocorrelation function for energy current increases with temperature, this is canceled out by the reciprocal temperature factor in relation to the thermal conductivity. With increasing density the integrated value increases, and this dominates the behavior of the thermal conductivity. By repeating the calculations with different ionic masses, we have concluded that the thermal conductivity is a function of m − 1 / 2 ( N / V ) 2 / 3 , where m is the geometric mean of ionic mass between anion and cation and N / V is the number density.
doi_str_mv 10.1063/1.3064588
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_3064588Thermal_conductivity</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3064588Thermal_conductivity</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_1_3064588Thermal_conductivity3</originalsourceid><addsrcrecordid>eNqlzr0KwjAUBeAgCtafwTfIC7TetBpbBxdRHB26h9DcYjRNSxIF314LHdxd7uEO5_ARsmKQMODZmiUZ8M02z0ckYpAX8Y4XMCYRQMriggOfkpn3dwBgu3QTkWt5Q9dIQ6vWqmcV9EuHN21r2rQmoKXSPKTR9PY9Cv2elth06GR4OpRWUYXW9wWFHdrvU-GCTGppPC6HnJPD-VQeL7GvdJBBt1Z0TjfSvQUD0ZsFE4N5sIhfS_b3wAejNljR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity of molten alkali halides: Temperatureand density dependence</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Ohtori, Norikazu ; Oono, Takuya ; Takase, Keiichi</creator><creatorcontrib>Ohtori, Norikazu ; Oono, Takuya ; Takase, Keiichi</creatorcontrib><description>The thermal conductivities of a series of molten alkali halides have been evaluated by using molecular dynamics simulation within the framework of Fumi-Tosi potential models. Although the calculated results showed 0%-50% larger values than experimental results depending on system, they are in agreement with each other in showing both negative temperature and ionic mass dependence. In order to clarify the cause of the negative temperature dependence in more detail, the thermal conductivity under constant temperature or constant density was evaluated for all alkali chlorides and all sodium halides. The calculations reveal that the thermal conductivity depends strongly on density but only weakly on temperature. While the integrated value of the autocorrelation function for energy current increases with temperature, this is canceled out by the reciprocal temperature factor in relation to the thermal conductivity. With increasing density the integrated value increases, and this dominates the behavior of the thermal conductivity. By repeating the calculations with different ionic masses, we have concluded that the thermal conductivity is a function of m − 1 / 2 ( N / V ) 2 / 3 , where m is the geometric mean of ionic mass between anion and cation and N / V is the number density.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3064588</identifier><identifier>CODEN: JCPSA6</identifier><publisher>American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2009-01, Vol.130 (4), p.044505-044505-5</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-scitation_primary_10_1063_1_3064588Thermal_conductivity3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Ohtori, Norikazu</creatorcontrib><creatorcontrib>Oono, Takuya</creatorcontrib><creatorcontrib>Takase, Keiichi</creatorcontrib><title>Thermal conductivity of molten alkali halides: Temperatureand density dependence</title><title>The Journal of chemical physics</title><description>The thermal conductivities of a series of molten alkali halides have been evaluated by using molecular dynamics simulation within the framework of Fumi-Tosi potential models. Although the calculated results showed 0%-50% larger values than experimental results depending on system, they are in agreement with each other in showing both negative temperature and ionic mass dependence. In order to clarify the cause of the negative temperature dependence in more detail, the thermal conductivity under constant temperature or constant density was evaluated for all alkali chlorides and all sodium halides. The calculations reveal that the thermal conductivity depends strongly on density but only weakly on temperature. While the integrated value of the autocorrelation function for energy current increases with temperature, this is canceled out by the reciprocal temperature factor in relation to the thermal conductivity. With increasing density the integrated value increases, and this dominates the behavior of the thermal conductivity. By repeating the calculations with different ionic masses, we have concluded that the thermal conductivity is a function of m − 1 / 2 ( N / V ) 2 / 3 , where m is the geometric mean of ionic mass between anion and cation and N / V is the number density.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqlzr0KwjAUBeAgCtafwTfIC7TetBpbBxdRHB26h9DcYjRNSxIF314LHdxd7uEO5_ARsmKQMODZmiUZ8M02z0ckYpAX8Y4XMCYRQMriggOfkpn3dwBgu3QTkWt5Q9dIQ6vWqmcV9EuHN21r2rQmoKXSPKTR9PY9Cv2elth06GR4OpRWUYXW9wWFHdrvU-GCTGppPC6HnJPD-VQeL7GvdJBBt1Z0TjfSvQUD0ZsFE4N5sIhfS_b3wAejNljR</recordid><startdate>20090129</startdate><enddate>20090129</enddate><creator>Ohtori, Norikazu</creator><creator>Oono, Takuya</creator><creator>Takase, Keiichi</creator><general>American Institute of Physics</general><scope/></search><sort><creationdate>20090129</creationdate><title>Thermal conductivity of molten alkali halides: Temperatureand density dependence</title><author>Ohtori, Norikazu ; Oono, Takuya ; Takase, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_1_3064588Thermal_conductivity3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohtori, Norikazu</creatorcontrib><creatorcontrib>Oono, Takuya</creatorcontrib><creatorcontrib>Takase, Keiichi</creatorcontrib><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohtori, Norikazu</au><au>Oono, Takuya</au><au>Takase, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of molten alkali halides: Temperatureand density dependence</atitle><jtitle>The Journal of chemical physics</jtitle><date>2009-01-29</date><risdate>2009</risdate><volume>130</volume><issue>4</issue><spage>044505</spage><epage>044505-5</epage><pages>044505-044505-5</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The thermal conductivities of a series of molten alkali halides have been evaluated by using molecular dynamics simulation within the framework of Fumi-Tosi potential models. Although the calculated results showed 0%-50% larger values than experimental results depending on system, they are in agreement with each other in showing both negative temperature and ionic mass dependence. In order to clarify the cause of the negative temperature dependence in more detail, the thermal conductivity under constant temperature or constant density was evaluated for all alkali chlorides and all sodium halides. The calculations reveal that the thermal conductivity depends strongly on density but only weakly on temperature. While the integrated value of the autocorrelation function for energy current increases with temperature, this is canceled out by the reciprocal temperature factor in relation to the thermal conductivity. With increasing density the integrated value increases, and this dominates the behavior of the thermal conductivity. By repeating the calculations with different ionic masses, we have concluded that the thermal conductivity is a function of m − 1 / 2 ( N / V ) 2 / 3 , where m is the geometric mean of ionic mass between anion and cation and N / V is the number density.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3064588</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2009-01, Vol.130 (4), p.044505-044505-5
issn 0021-9606
1089-7690
language
recordid cdi_scitation_primary_10_1063_1_3064588Thermal_conductivity
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Thermal conductivity of molten alkali halides: Temperatureand density dependence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20molten%20alkali%20halides:%20Temperatureand%20density%20dependence&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ohtori,%20Norikazu&rft.date=2009-01-29&rft.volume=130&rft.issue=4&rft.spage=044505&rft.epage=044505-5&rft.pages=044505-044505-5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3064588&rft_dat=%3Cscitation%3Escitation_primary_10_1063_1_3064588Thermal_conductivity%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true