Super Schrödinger algebra in AdS/CFT

We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2008-10, Vol.49 (10), p.102302-102302-13
Hauptverfasser: Sakaguchi, Makoto, Yoshida, Kentaroh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102302-13
container_issue 10
container_start_page 102302
container_title Journal of mathematical physics
container_volume 49
creator Sakaguchi, Makoto
Yoshida, Kentaroh
description We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of psu ( 2 , 2 ∣ 4 ) . It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras, osp ( 8 ∣ 4 ) and osp ( 8 ∗ ∣ 4 ) , and find super Schrödinger subalgebras in the same way.
doi_str_mv 10.1063/1.2998205
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2998205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1597881131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</originalsourceid><addsrcrecordid>eNqNkNFKwzAUQIMoOKcP_sEQ9qDQ7SZt05sXYRSnwsCHzeeQpsnsqG1NOsEf8wf8MTs79EnxKVw499xwCDmnMKHAwymdMCGQQXxABhRQBAmP8ZAMABgLWIR4TE683wBQilE0IOPltjFutNRP7uM9L6p1N6hybTKnRkU1muXLaTpfnZIjq0pvzvbvkDzOb1bpXbB4uL1PZ4tAR0nSBkKJHDIjMmQxi62JBO0-A5xlEQowmnMbo7AYck4jmueMKYTcMmUQtA5pOCQXvbdx9cvW-FZu6q2rupOS0ZhTHodJB132kHa1985Y2bjiWbk3SUHuIkgq9xE6drwXKq9VaZ2qdOG_FxggMuQ77rrnvC5a1RZ19bv0q5jcFZN9MKnKTnD1b8Ff8GvtfkDZ5Db8BI_xikU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215616537</pqid></control><display><type>article</type><title>Super Schrödinger algebra in AdS/CFT</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Sakaguchi, Makoto ; Yoshida, Kentaroh</creator><creatorcontrib>Sakaguchi, Makoto ; Yoshida, Kentaroh</creatorcontrib><description>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of psu ( 2 , 2 ∣ 4 ) . It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras, osp ( 8 ∣ 4 ) and osp ( 8 ∗ ∣ 4 ) , and find super Schrödinger subalgebras in the same way.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2998205</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Algebra ; Algebraic group theory ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use ; Theorems ; Theoretical mathematics</subject><ispartof>Journal of mathematical physics, 2008-10, Vol.49 (10), p.102302-102302-13</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Physics Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</citedby><cites>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2998205$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20882865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakaguchi, Makoto</creatorcontrib><creatorcontrib>Yoshida, Kentaroh</creatorcontrib><title>Super Schrödinger algebra in AdS/CFT</title><title>Journal of mathematical physics</title><description>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of psu ( 2 , 2 ∣ 4 ) . It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras, osp ( 8 ∣ 4 ) and osp ( 8 ∗ ∣ 4 ) , and find super Schrödinger subalgebras in the same way.</description><subject>Algebra</subject><subject>Algebraic group theory</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><subject>Theoretical mathematics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkNFKwzAUQIMoOKcP_sEQ9qDQ7SZt05sXYRSnwsCHzeeQpsnsqG1NOsEf8wf8MTs79EnxKVw499xwCDmnMKHAwymdMCGQQXxABhRQBAmP8ZAMABgLWIR4TE683wBQilE0IOPltjFutNRP7uM9L6p1N6hybTKnRkU1muXLaTpfnZIjq0pvzvbvkDzOb1bpXbB4uL1PZ4tAR0nSBkKJHDIjMmQxi62JBO0-A5xlEQowmnMbo7AYck4jmueMKYTcMmUQtA5pOCQXvbdx9cvW-FZu6q2rupOS0ZhTHodJB132kHa1985Y2bjiWbk3SUHuIkgq9xE6drwXKq9VaZ2qdOG_FxggMuQ77rrnvC5a1RZ19bv0q5jcFZN9MKnKTnD1b8Ff8GvtfkDZ5Db8BI_xikU</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Sakaguchi, Makoto</creator><creator>Yoshida, Kentaroh</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20081001</creationdate><title>Super Schrödinger algebra in AdS/CFT</title><author>Sakaguchi, Makoto ; Yoshida, Kentaroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Algebraic group theory</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakaguchi, Makoto</creatorcontrib><creatorcontrib>Yoshida, Kentaroh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakaguchi, Makoto</au><au>Yoshida, Kentaroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Schrödinger algebra in AdS/CFT</atitle><jtitle>Journal of mathematical physics</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>49</volume><issue>10</issue><spage>102302</spage><epage>102302-13</epage><pages>102302-102302-13</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of psu ( 2 , 2 ∣ 4 ) . It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras, osp ( 8 ∣ 4 ) and osp ( 8 ∗ ∣ 4 ) , and find super Schrödinger subalgebras in the same way.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2998205</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2008-10, Vol.49 (10), p.102302-102302-13
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_2998205
source AIP Journals Complete; AIP Digital Archive
subjects Algebra
Algebraic group theory
Exact sciences and technology
Mathematical methods in physics
Mathematics
Physics
Sciences and techniques of general use
Theorems
Theoretical mathematics
title Super Schrödinger algebra in AdS/CFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Schr%C3%B6dinger%20algebra%20in%20AdS/CFT&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Sakaguchi,%20Makoto&rft.date=2008-10-01&rft.volume=49&rft.issue=10&rft.spage=102302&rft.epage=102302-13&rft.pages=102302-102302-13&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2998205&rft_dat=%3Cproquest_scita%3E1597881131%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215616537&rft_id=info:pmid/&rfr_iscdi=true