Super Schrödinger algebra in AdS/CFT
We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra psu ( 2 , 2 ∣ 4 ) . The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödin...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2008-10, Vol.49 (10), p.102302-102302-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102302-13 |
---|---|
container_issue | 10 |
container_start_page | 102302 |
container_title | Journal of mathematical physics |
container_volume | 49 |
creator | Sakaguchi, Makoto Yoshida, Kentaroh |
description | We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra
psu
(
2
,
2
∣
4
)
. The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of
psu
(
2
,
2
∣
4
)
. It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras,
osp
(
8
∣
4
)
and
osp
(
8
∗
∣
4
)
, and find super Schrödinger subalgebras in the same way. |
doi_str_mv | 10.1063/1.2998205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2998205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1597881131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</originalsourceid><addsrcrecordid>eNqNkNFKwzAUQIMoOKcP_sEQ9qDQ7SZt05sXYRSnwsCHzeeQpsnsqG1NOsEf8wf8MTs79EnxKVw499xwCDmnMKHAwymdMCGQQXxABhRQBAmP8ZAMABgLWIR4TE683wBQilE0IOPltjFutNRP7uM9L6p1N6hybTKnRkU1muXLaTpfnZIjq0pvzvbvkDzOb1bpXbB4uL1PZ4tAR0nSBkKJHDIjMmQxi62JBO0-A5xlEQowmnMbo7AYck4jmueMKYTcMmUQtA5pOCQXvbdx9cvW-FZu6q2rupOS0ZhTHodJB132kHa1985Y2bjiWbk3SUHuIkgq9xE6drwXKq9VaZ2qdOG_FxggMuQ77rrnvC5a1RZ19bv0q5jcFZN9MKnKTnD1b8Ff8GvtfkDZ5Db8BI_xikU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215616537</pqid></control><display><type>article</type><title>Super Schrödinger algebra in AdS/CFT</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Sakaguchi, Makoto ; Yoshida, Kentaroh</creator><creatorcontrib>Sakaguchi, Makoto ; Yoshida, Kentaroh</creatorcontrib><description>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra
psu
(
2
,
2
∣
4
)
. The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of
psu
(
2
,
2
∣
4
)
. It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras,
osp
(
8
∣
4
)
and
osp
(
8
∗
∣
4
)
, and find super Schrödinger subalgebras in the same way.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2998205</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Algebra ; Algebraic group theory ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use ; Theorems ; Theoretical mathematics</subject><ispartof>Journal of mathematical physics, 2008-10, Vol.49 (10), p.102302-102302-13</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Physics Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</citedby><cites>FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2998205$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20882865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakaguchi, Makoto</creatorcontrib><creatorcontrib>Yoshida, Kentaroh</creatorcontrib><title>Super Schrödinger algebra in AdS/CFT</title><title>Journal of mathematical physics</title><description>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra
psu
(
2
,
2
∣
4
)
. The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of
psu
(
2
,
2
∣
4
)
. It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras,
osp
(
8
∣
4
)
and
osp
(
8
∗
∣
4
)
, and find super Schrödinger subalgebras in the same way.</description><subject>Algebra</subject><subject>Algebraic group theory</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><subject>Theoretical mathematics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkNFKwzAUQIMoOKcP_sEQ9qDQ7SZt05sXYRSnwsCHzeeQpsnsqG1NOsEf8wf8MTs79EnxKVw499xwCDmnMKHAwymdMCGQQXxABhRQBAmP8ZAMABgLWIR4TE683wBQilE0IOPltjFutNRP7uM9L6p1N6hybTKnRkU1muXLaTpfnZIjq0pvzvbvkDzOb1bpXbB4uL1PZ4tAR0nSBkKJHDIjMmQxi62JBO0-A5xlEQowmnMbo7AYck4jmueMKYTcMmUQtA5pOCQXvbdx9cvW-FZu6q2rupOS0ZhTHodJB132kHa1985Y2bjiWbk3SUHuIkgq9xE6drwXKq9VaZ2qdOG_FxggMuQ77rrnvC5a1RZ19bv0q5jcFZN9MKnKTnD1b8Ff8GvtfkDZ5Db8BI_xikU</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Sakaguchi, Makoto</creator><creator>Yoshida, Kentaroh</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20081001</creationdate><title>Super Schrödinger algebra in AdS/CFT</title><author>Sakaguchi, Makoto ; Yoshida, Kentaroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9a9d0be9b82525fe491998062b4890ec66f589f8366141dd22a80df2ae80cc313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Algebraic group theory</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakaguchi, Makoto</creatorcontrib><creatorcontrib>Yoshida, Kentaroh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakaguchi, Makoto</au><au>Yoshida, Kentaroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Schrödinger algebra in AdS/CFT</atitle><jtitle>Journal of mathematical physics</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>49</volume><issue>10</issue><spage>102302</spage><epage>102302-13</epage><pages>102302-102302-13</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We discuss (extended) super-Schrödinger algebras obtained as subalgebras of the superconformal algebra
psu
(
2
,
2
∣
4
)
. The Schrödinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super-Schrödinger algebra. In fact, we find an extended super-Schrödinger subalgebra of
psu
(
2
,
2
∣
4
)
. It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrödinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super-Schrödinger subalgebra, which is a supersymmetric extension of the original Schrödinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super-Schrödinger subalgebras of the superconformal algebras,
osp
(
8
∣
4
)
and
osp
(
8
∗
∣
4
)
, and find super Schrödinger subalgebras in the same way.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2998205</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2008-10, Vol.49 (10), p.102302-102302-13 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_2998205 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Algebra Algebraic group theory Exact sciences and technology Mathematical methods in physics Mathematics Physics Sciences and techniques of general use Theorems Theoretical mathematics |
title | Super Schrödinger algebra in AdS/CFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Schr%C3%B6dinger%20algebra%20in%20AdS/CFT&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Sakaguchi,%20Makoto&rft.date=2008-10-01&rft.volume=49&rft.issue=10&rft.spage=102302&rft.epage=102302-13&rft.pages=102302-102302-13&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2998205&rft_dat=%3Cproquest_scita%3E1597881131%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215616537&rft_id=info:pmid/&rfr_iscdi=true |