The role of plasma elongation on the linear damping of zonal flows

Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2008-06, Vol.15 (6), p.062306-062306-11
Hauptverfasser: Angelino, P., Garbet, X., Villard, L., Bottino, A., Jolliet, S., Ghendrih, Ph, Grandgirard, V., McMillan, B. F., Sarazin, Y., Dif-Pradalier, G., Tran, T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 062306-11
container_issue 6
container_start_page 062306
container_title Physics of plasmas
container_volume 15
creator Angelino, P.
Garbet, X.
Villard, L.
Bottino, A.
Jolliet, S.
Ghendrih, Ph
Grandgirard, V.
McMillan, B. F.
Sarazin, Y.
Dif-Pradalier, G.
Tran, T. M.
description Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonlinear interactions. A class of macroscopic flows, the poloidally symmetric zonal flows, is widely recognized as a key constituent in nearly all cases and regimes of microturbulence, also because of the realization that zonal flows are a critical agent of self-regulation for turbulent transport. In tokamaks and other toroidal magnetic confinement systems, axisymmetric flows exist in two branches, a zero frequency branch and a finite frequency branch, named Geodesic Acoustic Modes (GAMs). The finite frequency is due to the geodesic curvature of the magnetic field. There is a growing body of evidence that suggests strong GAM activity in most devices. Theoretical investigation of the GAMs is still an open field of research. Part of the difficulty of modelling the GAMs stems from the requirement of running global codes. Another issue is that one cannot determine a simple one to one relation between turbulence stabilization and GAM activity. This paper focuses on the study of ion temperature gradient turbulence in realistic tokamak magnetohydrodynamic equilibria. Analytical and numerical analyses are applied to the study of geometrical effects on zonal flows oscillations. Results are shown on the effects of the plasma elongation on the GAM amplitude and frequency and on the zonal flow residual amplitude.
doi_str_mv 10.1063/1.2928849
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2928849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-5728678a0fadacc9a4bd2b3eef0499489de94f4f01115c99448787bf995d04df3</originalsourceid><addsrcrecordid>eNqNkN9LAyEAgCUKWquH_gOhpwa39M479SWo0S8Y9LKgN3GebheeHnoU9dfn7QY9DQJBkc9P_QC4xGiOUVXc4HnOc8YIPwITjBjPaEXJ8bCmKKsq8n4KzmL8QAiRqmQTcL_aahi81dAb2FkZWwm19W4j-8Y7mEafANs4LQOsZds1bjOgP95JC431X_EcnBhpo77Yz1Pw9viwWjxny9enl8XdMlOEFX1W0pxVlElkZC2V4pKs63xdaG0Q4ZwwXmtODDEIY1yqtEMYZXRtOC9rRGpTTMHV6PWxb0RUTa_VVnnntOpFjnGOSIETdT1SKvgYgzaiC00rw7fASAyJBBb7RIm9HdlBtvvwYTh1EkMn4ZNx10noJJgdEnz68HdYdLv3z_59W_ELUmGJgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of plasma elongation on the linear damping of zonal flows</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Angelino, P. ; Garbet, X. ; Villard, L. ; Bottino, A. ; Jolliet, S. ; Ghendrih, Ph ; Grandgirard, V. ; McMillan, B. F. ; Sarazin, Y. ; Dif-Pradalier, G. ; Tran, T. M.</creator><creatorcontrib>Angelino, P. ; Garbet, X. ; Villard, L. ; Bottino, A. ; Jolliet, S. ; Ghendrih, Ph ; Grandgirard, V. ; McMillan, B. F. ; Sarazin, Y. ; Dif-Pradalier, G. ; Tran, T. M.</creatorcontrib><description>Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonlinear interactions. A class of macroscopic flows, the poloidally symmetric zonal flows, is widely recognized as a key constituent in nearly all cases and regimes of microturbulence, also because of the realization that zonal flows are a critical agent of self-regulation for turbulent transport. In tokamaks and other toroidal magnetic confinement systems, axisymmetric flows exist in two branches, a zero frequency branch and a finite frequency branch, named Geodesic Acoustic Modes (GAMs). The finite frequency is due to the geodesic curvature of the magnetic field. There is a growing body of evidence that suggests strong GAM activity in most devices. Theoretical investigation of the GAMs is still an open field of research. Part of the difficulty of modelling the GAMs stems from the requirement of running global codes. Another issue is that one cannot determine a simple one to one relation between turbulence stabilization and GAM activity. This paper focuses on the study of ion temperature gradient turbulence in realistic tokamak magnetohydrodynamic equilibria. Analytical and numerical analyses are applied to the study of geometrical effects on zonal flows oscillations. Results are shown on the effects of the plasma elongation on the GAM amplitude and frequency and on the zonal flow residual amplitude.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.2928849</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; AMPLITUDES ; AXIAL SYMMETRY ; DAMPING ; ELECTRON TEMPERATURE ; ELONGATION ; ENERGY TRANSFER ; ION ACOUSTIC WAVES ; ION TEMPERATURE ; MAGNETIC CONFINEMENT ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; NUMERICAL ANALYSIS ; PLASMA ; PLASMA DRIFT ; TEMPERATURE GRADIENTS ; TOKAMAK DEVICES ; TURBULENCE ; WASTE HEAT UTILIZATION ; WAVELENGTHS</subject><ispartof>Physics of plasmas, 2008-06, Vol.15 (6), p.062306-062306-11</ispartof><rights>American Institute of Physics</rights><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-5728678a0fadacc9a4bd2b3eef0499489de94f4f01115c99448787bf995d04df3</citedby><cites>FETCH-LOGICAL-c483t-5728678a0fadacc9a4bd2b3eef0499489de94f4f01115c99448787bf995d04df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.2928849$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21120431$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelino, P.</creatorcontrib><creatorcontrib>Garbet, X.</creatorcontrib><creatorcontrib>Villard, L.</creatorcontrib><creatorcontrib>Bottino, A.</creatorcontrib><creatorcontrib>Jolliet, S.</creatorcontrib><creatorcontrib>Ghendrih, Ph</creatorcontrib><creatorcontrib>Grandgirard, V.</creatorcontrib><creatorcontrib>McMillan, B. F.</creatorcontrib><creatorcontrib>Sarazin, Y.</creatorcontrib><creatorcontrib>Dif-Pradalier, G.</creatorcontrib><creatorcontrib>Tran, T. M.</creatorcontrib><title>The role of plasma elongation on the linear damping of zonal flows</title><title>Physics of plasmas</title><description>Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonlinear interactions. A class of macroscopic flows, the poloidally symmetric zonal flows, is widely recognized as a key constituent in nearly all cases and regimes of microturbulence, also because of the realization that zonal flows are a critical agent of self-regulation for turbulent transport. In tokamaks and other toroidal magnetic confinement systems, axisymmetric flows exist in two branches, a zero frequency branch and a finite frequency branch, named Geodesic Acoustic Modes (GAMs). The finite frequency is due to the geodesic curvature of the magnetic field. There is a growing body of evidence that suggests strong GAM activity in most devices. Theoretical investigation of the GAMs is still an open field of research. Part of the difficulty of modelling the GAMs stems from the requirement of running global codes. Another issue is that one cannot determine a simple one to one relation between turbulence stabilization and GAM activity. This paper focuses on the study of ion temperature gradient turbulence in realistic tokamak magnetohydrodynamic equilibria. Analytical and numerical analyses are applied to the study of geometrical effects on zonal flows oscillations. Results are shown on the effects of the plasma elongation on the GAM amplitude and frequency and on the zonal flow residual amplitude.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>AMPLITUDES</subject><subject>AXIAL SYMMETRY</subject><subject>DAMPING</subject><subject>ELECTRON TEMPERATURE</subject><subject>ELONGATION</subject><subject>ENERGY TRANSFER</subject><subject>ION ACOUSTIC WAVES</subject><subject>ION TEMPERATURE</subject><subject>MAGNETIC CONFINEMENT</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>NUMERICAL ANALYSIS</subject><subject>PLASMA</subject><subject>PLASMA DRIFT</subject><subject>TEMPERATURE GRADIENTS</subject><subject>TOKAMAK DEVICES</subject><subject>TURBULENCE</subject><subject>WASTE HEAT UTILIZATION</subject><subject>WAVELENGTHS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkN9LAyEAgCUKWquH_gOhpwa39M479SWo0S8Y9LKgN3GebheeHnoU9dfn7QY9DQJBkc9P_QC4xGiOUVXc4HnOc8YIPwITjBjPaEXJ8bCmKKsq8n4KzmL8QAiRqmQTcL_aahi81dAb2FkZWwm19W4j-8Y7mEafANs4LQOsZds1bjOgP95JC431X_EcnBhpo77Yz1Pw9viwWjxny9enl8XdMlOEFX1W0pxVlElkZC2V4pKs63xdaG0Q4ZwwXmtODDEIY1yqtEMYZXRtOC9rRGpTTMHV6PWxb0RUTa_VVnnntOpFjnGOSIETdT1SKvgYgzaiC00rw7fASAyJBBb7RIm9HdlBtvvwYTh1EkMn4ZNx10noJJgdEnz68HdYdLv3z_59W_ELUmGJgw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Angelino, P.</creator><creator>Garbet, X.</creator><creator>Villard, L.</creator><creator>Bottino, A.</creator><creator>Jolliet, S.</creator><creator>Ghendrih, Ph</creator><creator>Grandgirard, V.</creator><creator>McMillan, B. F.</creator><creator>Sarazin, Y.</creator><creator>Dif-Pradalier, G.</creator><creator>Tran, T. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080601</creationdate><title>The role of plasma elongation on the linear damping of zonal flows</title><author>Angelino, P. ; Garbet, X. ; Villard, L. ; Bottino, A. ; Jolliet, S. ; Ghendrih, Ph ; Grandgirard, V. ; McMillan, B. F. ; Sarazin, Y. ; Dif-Pradalier, G. ; Tran, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-5728678a0fadacc9a4bd2b3eef0499489de94f4f01115c99448787bf995d04df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>AMPLITUDES</topic><topic>AXIAL SYMMETRY</topic><topic>DAMPING</topic><topic>ELECTRON TEMPERATURE</topic><topic>ELONGATION</topic><topic>ENERGY TRANSFER</topic><topic>ION ACOUSTIC WAVES</topic><topic>ION TEMPERATURE</topic><topic>MAGNETIC CONFINEMENT</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>NUMERICAL ANALYSIS</topic><topic>PLASMA</topic><topic>PLASMA DRIFT</topic><topic>TEMPERATURE GRADIENTS</topic><topic>TOKAMAK DEVICES</topic><topic>TURBULENCE</topic><topic>WASTE HEAT UTILIZATION</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelino, P.</creatorcontrib><creatorcontrib>Garbet, X.</creatorcontrib><creatorcontrib>Villard, L.</creatorcontrib><creatorcontrib>Bottino, A.</creatorcontrib><creatorcontrib>Jolliet, S.</creatorcontrib><creatorcontrib>Ghendrih, Ph</creatorcontrib><creatorcontrib>Grandgirard, V.</creatorcontrib><creatorcontrib>McMillan, B. F.</creatorcontrib><creatorcontrib>Sarazin, Y.</creatorcontrib><creatorcontrib>Dif-Pradalier, G.</creatorcontrib><creatorcontrib>Tran, T. M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelino, P.</au><au>Garbet, X.</au><au>Villard, L.</au><au>Bottino, A.</au><au>Jolliet, S.</au><au>Ghendrih, Ph</au><au>Grandgirard, V.</au><au>McMillan, B. F.</au><au>Sarazin, Y.</au><au>Dif-Pradalier, G.</au><au>Tran, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of plasma elongation on the linear damping of zonal flows</atitle><jtitle>Physics of plasmas</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>15</volume><issue>6</issue><spage>062306</spage><epage>062306-11</epage><pages>062306-062306-11</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Drift wave turbulence is known to self-organize to form axisymmetric macroscopic flows. The basic mechanism for macroscopic flow generation is called inverse energy cascade. Essentially, it is an energy transfer from the short wavelengths to the long wavelengths in the turbulent spectrum due to nonlinear interactions. A class of macroscopic flows, the poloidally symmetric zonal flows, is widely recognized as a key constituent in nearly all cases and regimes of microturbulence, also because of the realization that zonal flows are a critical agent of self-regulation for turbulent transport. In tokamaks and other toroidal magnetic confinement systems, axisymmetric flows exist in two branches, a zero frequency branch and a finite frequency branch, named Geodesic Acoustic Modes (GAMs). The finite frequency is due to the geodesic curvature of the magnetic field. There is a growing body of evidence that suggests strong GAM activity in most devices. Theoretical investigation of the GAMs is still an open field of research. Part of the difficulty of modelling the GAMs stems from the requirement of running global codes. Another issue is that one cannot determine a simple one to one relation between turbulence stabilization and GAM activity. This paper focuses on the study of ion temperature gradient turbulence in realistic tokamak magnetohydrodynamic equilibria. Analytical and numerical analyses are applied to the study of geometrical effects on zonal flows oscillations. Results are shown on the effects of the plasma elongation on the GAM amplitude and frequency and on the zonal flow residual amplitude.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2928849</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2008-06, Vol.15 (6), p.062306-062306-11
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_2928849
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
AMPLITUDES
AXIAL SYMMETRY
DAMPING
ELECTRON TEMPERATURE
ELONGATION
ENERGY TRANSFER
ION ACOUSTIC WAVES
ION TEMPERATURE
MAGNETIC CONFINEMENT
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
NUMERICAL ANALYSIS
PLASMA
PLASMA DRIFT
TEMPERATURE GRADIENTS
TOKAMAK DEVICES
TURBULENCE
WASTE HEAT UTILIZATION
WAVELENGTHS
title The role of plasma elongation on the linear damping of zonal flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20plasma%20elongation%20on%20the%20linear%20damping%20of%20zonal%20flows&rft.jtitle=Physics%20of%20plasmas&rft.au=Angelino,%20P.&rft.date=2008-06-01&rft.volume=15&rft.issue=6&rft.spage=062306&rft.epage=062306-11&rft.pages=062306-062306-11&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.2928849&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true