Thin-foil magnetic force system for high-numerical-aperture microscopy

Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2006-02, Vol.77 (2), p.023702-023702-9
Hauptverfasser: Fisher, J. K., Cribb, J., Desai, K. V., Vicci, L., Wilde, B., Keller, K., Taylor, R. M., Haase, J., Bloom, K., O’Brien, E. Timothy, Superfine, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023702-9
container_issue 2
container_start_page 023702
container_title Review of scientific instruments
container_volume 77
creator Fisher, J. K.
Cribb, J.
Desai, K. V.
Vicci, L.
Wilde, B.
Keller, K.
Taylor, R. M.
Haase, J.
Bloom, K.
O’Brien, E. Timothy
Superfine, R.
description Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 μ m paramagnetic particle and 13 nN on a 4.5 μ m paramagnetic particle, forces over the full 4 π sr , and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution ( 2.4 nm ) , high-bandwidth ( 10 kHz ) , long-range ( 100 μ m xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function.
doi_str_mv 10.1063/1.2166509
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2166509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733638719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-93e4186050535c7cae948739cc9b955a93ea469578b92de596df8ea18b7e0f8a3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun4c_APSmyhUk03zdRFkcVUQvKznkM1OdyNtU5N2Yf-9LVZXD4q5hDAPT2beQeiU4CuCOb0mV2PCOcNqB40IlioVfEx30QhjmqVcZPIAHcb4irvDCNlHB4RLJjPFRmg6W7kqzb0rktIsK2icTXIfLCRxExso-0eycstVWrUlBGdNkZoaQtMGSEpng4_W15tjtJebIsLJcB-hl-ndbPKQPj3fP05un1KbKdWkikJGJMcMM8qssAZUJgVV1qq5Ysx0dZNxxYScq_ECmOKLXIIhci4A59LQI3Tz4a3beQkLC1UTTKHr4EoTNtobp39WKrfSS7_WhBFKhOwE54Mg-LcWYqNLFy0UhanAt1ELSjmVgqiOvPgg-xljgPzrF4J1H7smeoi9Y8--t7Ulh5y3fUfrGtM4X_1u6zei-43oz43ovBNc_lvwF7z2YQvqepHTd2rpr-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733638719</pqid></control><display><type>article</type><title>Thin-foil magnetic force system for high-numerical-aperture microscopy</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><creator>Fisher, J. K. ; Cribb, J. ; Desai, K. V. ; Vicci, L. ; Wilde, B. ; Keller, K. ; Taylor, R. M. ; Haase, J. ; Bloom, K. ; O’Brien, E. Timothy ; Superfine, R.</creator><creatorcontrib>Fisher, J. K. ; Cribb, J. ; Desai, K. V. ; Vicci, L. ; Wilde, B. ; Keller, K. ; Taylor, R. M. ; Haase, J. ; Bloom, K. ; O’Brien, E. Timothy ; Superfine, R.</creatorcontrib><description>Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 μ m paramagnetic particle and 13 nN on a 4.5 μ m paramagnetic particle, forces over the full 4 π sr , and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution ( 2.4 nm ) , high-bandwidth ( 10 kHz ) , long-range ( 100 μ m xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.2166509</identifier><identifier>PMID: 16858495</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Review of scientific instruments, 2006-02, Vol.77 (2), p.023702-023702-9</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-93e4186050535c7cae948739cc9b955a93ea469578b92de596df8ea18b7e0f8a3</citedby><cites>FETCH-LOGICAL-c499t-93e4186050535c7cae948739cc9b955a93ea469578b92de596df8ea18b7e0f8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.2166509$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16858495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, J. K.</creatorcontrib><creatorcontrib>Cribb, J.</creatorcontrib><creatorcontrib>Desai, K. V.</creatorcontrib><creatorcontrib>Vicci, L.</creatorcontrib><creatorcontrib>Wilde, B.</creatorcontrib><creatorcontrib>Keller, K.</creatorcontrib><creatorcontrib>Taylor, R. M.</creatorcontrib><creatorcontrib>Haase, J.</creatorcontrib><creatorcontrib>Bloom, K.</creatorcontrib><creatorcontrib>O’Brien, E. Timothy</creatorcontrib><creatorcontrib>Superfine, R.</creatorcontrib><title>Thin-foil magnetic force system for high-numerical-aperture microscopy</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 μ m paramagnetic particle and 13 nN on a 4.5 μ m paramagnetic particle, forces over the full 4 π sr , and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution ( 2.4 nm ) , high-bandwidth ( 10 kHz ) , long-range ( 100 μ m xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMoun4c_APSmyhUk03zdRFkcVUQvKznkM1OdyNtU5N2Yf-9LVZXD4q5hDAPT2beQeiU4CuCOb0mV2PCOcNqB40IlioVfEx30QhjmqVcZPIAHcb4irvDCNlHB4RLJjPFRmg6W7kqzb0rktIsK2icTXIfLCRxExso-0eycstVWrUlBGdNkZoaQtMGSEpng4_W15tjtJebIsLJcB-hl-ndbPKQPj3fP05un1KbKdWkikJGJMcMM8qssAZUJgVV1qq5Ysx0dZNxxYScq_ECmOKLXIIhci4A59LQI3Tz4a3beQkLC1UTTKHr4EoTNtobp39WKrfSS7_WhBFKhOwE54Mg-LcWYqNLFy0UhanAt1ELSjmVgqiOvPgg-xljgPzrF4J1H7smeoi9Y8--t7Ulh5y3fUfrGtM4X_1u6zei-43oz43ovBNc_lvwF7z2YQvqepHTd2rpr-0</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Fisher, J. K.</creator><creator>Cribb, J.</creator><creator>Desai, K. V.</creator><creator>Vicci, L.</creator><creator>Wilde, B.</creator><creator>Keller, K.</creator><creator>Taylor, R. M.</creator><creator>Haase, J.</creator><creator>Bloom, K.</creator><creator>O’Brien, E. Timothy</creator><creator>Superfine, R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060201</creationdate><title>Thin-foil magnetic force system for high-numerical-aperture microscopy</title><author>Fisher, J. K. ; Cribb, J. ; Desai, K. V. ; Vicci, L. ; Wilde, B. ; Keller, K. ; Taylor, R. M. ; Haase, J. ; Bloom, K. ; O’Brien, E. Timothy ; Superfine, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-93e4186050535c7cae948739cc9b955a93ea469578b92de596df8ea18b7e0f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, J. K.</creatorcontrib><creatorcontrib>Cribb, J.</creatorcontrib><creatorcontrib>Desai, K. V.</creatorcontrib><creatorcontrib>Vicci, L.</creatorcontrib><creatorcontrib>Wilde, B.</creatorcontrib><creatorcontrib>Keller, K.</creatorcontrib><creatorcontrib>Taylor, R. M.</creatorcontrib><creatorcontrib>Haase, J.</creatorcontrib><creatorcontrib>Bloom, K.</creatorcontrib><creatorcontrib>O’Brien, E. Timothy</creatorcontrib><creatorcontrib>Superfine, R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, J. K.</au><au>Cribb, J.</au><au>Desai, K. V.</au><au>Vicci, L.</au><au>Wilde, B.</au><au>Keller, K.</au><au>Taylor, R. M.</au><au>Haase, J.</au><au>Bloom, K.</au><au>O’Brien, E. Timothy</au><au>Superfine, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-foil magnetic force system for high-numerical-aperture microscopy</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>77</volume><issue>2</issue><spage>023702</spage><epage>023702-9</epage><pages>023702-023702-9</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 μ m paramagnetic particle and 13 nN on a 4.5 μ m paramagnetic particle, forces over the full 4 π sr , and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution ( 2.4 nm ) , high-bandwidth ( 10 kHz ) , long-range ( 100 μ m xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>16858495</pmid><doi>10.1063/1.2166509</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2006-02, Vol.77 (2), p.023702-023702-9
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_2166509
source American Institute of Physics (AIP) Journals; AIP Digital Archive
title Thin-foil magnetic force system for high-numerical-aperture microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-foil%20magnetic%20force%20system%20for%20high-numerical-aperture%20microscopy&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Fisher,%20J.%20K.&rft.date=2006-02-01&rft.volume=77&rft.issue=2&rft.spage=023702&rft.epage=023702-9&rft.pages=023702-023702-9&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.2166509&rft_dat=%3Cproquest_scita%3E733638719%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733638719&rft_id=info:pmid/16858495&rfr_iscdi=true