Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis

For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2006-02, Vol.47 (2), p.023507-023507-25
Hauptverfasser: Turner, P. S., Rowe, D. J., Repka, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023507-25
container_issue 2
container_start_page 023507
container_title Journal of mathematical physics
container_volume 47
creator Turner, P. S.
Rowe, D. J.
Repka, J.
description For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.
doi_str_mv 10.1063/1.2162332
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2162332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0FABCtszddm04sgxS8oeFFPQkinE7uim5IEof_eXbfqQfSUDHnmncxDyCFnY860PONjwbWQUmyRAWdmUlS6NNtkwJgQhVDG7JK9lF4Y49woNSBPjwg5RAphiRGbTFN2GWleYohrGnx3o8_YYKyBRlxFTC3lch2a1D2nQE9oSUe0bqhr-lK25dylOu2THe9eEx5sziF5uLq8n94Us7vr2-nFrADFRS6UcxXo0qNHUCiY8tIIDvP268IzY6QQQk94tYBy7hTMpWNOaUSjBFTegRySoz43pFzbBHVGWEJomnY3K1ilTSVZS416CmJIKaK3q1i_ubi2nNlOnuV2I69lj3t25RK4Vx9dA3X6aai00iXvuPOe64Z-Wvk7tDdtv0zbznQbcPpXwHsLfzfb1cL_B_9e4QOmrZ2j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Turner, P. S. ; Rowe, D. J. ; Repka, J.</creator><creatorcontrib>Turner, P. S. ; Rowe, D. J. ; Repka, J.</creatorcontrib><description>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2162332</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>ALGEBRA ; ALGORITHMS ; ANGULAR MOMENTUM ; ANNIHILATION OPERATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLECTIVE MODEL ; EIGENSTATES ; Exact sciences and technology ; GROUP THEORY ; HAMILTONIANS ; Mathematical methods in physics ; Mathematics ; MATRICES ; Physics ; QUADRUPOLES ; QUANTUM MECHANICS ; ROTATION ; Sciences and techniques of general use ; SO-3 GROUPS ; SO-5 GROUPS ; SPECTRA ; TRANSFORMATIONS ; VECTORS</subject><ispartof>Journal of mathematical physics, 2006-02, Vol.47 (2), p.023507-023507-25</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</citedby><cites>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2162332$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17646512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20768730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, P. S.</creatorcontrib><creatorcontrib>Rowe, D. J.</creatorcontrib><creatorcontrib>Repka, J.</creatorcontrib><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><title>Journal of mathematical physics</title><description>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</description><subject>ALGEBRA</subject><subject>ALGORITHMS</subject><subject>ANGULAR MOMENTUM</subject><subject>ANNIHILATION OPERATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLECTIVE MODEL</subject><subject>EIGENSTATES</subject><subject>Exact sciences and technology</subject><subject>GROUP THEORY</subject><subject>HAMILTONIANS</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>MATRICES</subject><subject>Physics</subject><subject>QUADRUPOLES</subject><subject>QUANTUM MECHANICS</subject><subject>ROTATION</subject><subject>Sciences and techniques of general use</subject><subject>SO-3 GROUPS</subject><subject>SO-5 GROUPS</subject><subject>SPECTRA</subject><subject>TRANSFORMATIONS</subject><subject>VECTORS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0FABCtszddm04sgxS8oeFFPQkinE7uim5IEof_eXbfqQfSUDHnmncxDyCFnY860PONjwbWQUmyRAWdmUlS6NNtkwJgQhVDG7JK9lF4Y49woNSBPjwg5RAphiRGbTFN2GWleYohrGnx3o8_YYKyBRlxFTC3lch2a1D2nQE9oSUe0bqhr-lK25dylOu2THe9eEx5sziF5uLq8n94Us7vr2-nFrADFRS6UcxXo0qNHUCiY8tIIDvP268IzY6QQQk94tYBy7hTMpWNOaUSjBFTegRySoz43pFzbBHVGWEJomnY3K1ilTSVZS416CmJIKaK3q1i_ubi2nNlOnuV2I69lj3t25RK4Vx9dA3X6aai00iXvuPOe64Z-Wvk7tDdtv0zbznQbcPpXwHsLfzfb1cL_B_9e4QOmrZ2j</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Turner, P. S.</creator><creator>Rowe, D. J.</creator><creator>Repka, J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060201</creationdate><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><author>Turner, P. S. ; Rowe, D. J. ; Repka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGEBRA</topic><topic>ALGORITHMS</topic><topic>ANGULAR MOMENTUM</topic><topic>ANNIHILATION OPERATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLECTIVE MODEL</topic><topic>EIGENSTATES</topic><topic>Exact sciences and technology</topic><topic>GROUP THEORY</topic><topic>HAMILTONIANS</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>MATRICES</topic><topic>Physics</topic><topic>QUADRUPOLES</topic><topic>QUANTUM MECHANICS</topic><topic>ROTATION</topic><topic>Sciences and techniques of general use</topic><topic>SO-3 GROUPS</topic><topic>SO-5 GROUPS</topic><topic>SPECTRA</topic><topic>TRANSFORMATIONS</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, P. S.</creatorcontrib><creatorcontrib>Rowe, D. J.</creatorcontrib><creatorcontrib>Repka, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, P. S.</au><au>Rowe, D. J.</au><au>Repka, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</atitle><jtitle>Journal of mathematical physics</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>47</volume><issue>2</issue><spage>023507</spage><epage>023507-25</epage><pages>023507-023507-25</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2162332</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2006-02, Vol.47 (2), p.023507-023507-25
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_2162332
source AIP Journals Complete; AIP Digital Archive
subjects ALGEBRA
ALGORITHMS
ANGULAR MOMENTUM
ANNIHILATION OPERATORS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLECTIVE MODEL
EIGENSTATES
Exact sciences and technology
GROUP THEORY
HAMILTONIANS
Mathematical methods in physics
Mathematics
MATRICES
Physics
QUADRUPOLES
QUANTUM MECHANICS
ROTATION
Sciences and techniques of general use
SO-3 GROUPS
SO-5 GROUPS
SPECTRA
TRANSFORMATIONS
VECTORS
title Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20coherent%20state%20theory%20of%20the%20generic%20representations%20of%20so%20(%205%20)%20in%20an%20so%20(%203%20)%20basis&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Turner,%20P.%20S.&rft.date=2006-02-01&rft.volume=47&rft.issue=2&rft.spage=023507&rft.epage=023507-25&rft.pages=023507-023507-25&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2162332&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true