Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis
For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2006-02, Vol.47 (2), p.023507-023507-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 023507-25 |
---|---|
container_issue | 2 |
container_start_page | 023507 |
container_title | Journal of mathematical physics |
container_volume | 47 |
creator | Turner, P. S. Rowe, D. J. Repka, J. |
description | For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented. |
doi_str_mv | 10.1063/1.2162332 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2162332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0FABCtszddm04sgxS8oeFFPQkinE7uim5IEof_eXbfqQfSUDHnmncxDyCFnY860PONjwbWQUmyRAWdmUlS6NNtkwJgQhVDG7JK9lF4Y49woNSBPjwg5RAphiRGbTFN2GWleYohrGnx3o8_YYKyBRlxFTC3lch2a1D2nQE9oSUe0bqhr-lK25dylOu2THe9eEx5sziF5uLq8n94Us7vr2-nFrADFRS6UcxXo0qNHUCiY8tIIDvP268IzY6QQQk94tYBy7hTMpWNOaUSjBFTegRySoz43pFzbBHVGWEJomnY3K1ilTSVZS416CmJIKaK3q1i_ubi2nNlOnuV2I69lj3t25RK4Vx9dA3X6aai00iXvuPOe64Z-Wvk7tDdtv0zbznQbcPpXwHsLfzfb1cL_B_9e4QOmrZ2j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Turner, P. S. ; Rowe, D. J. ; Repka, J.</creator><creatorcontrib>Turner, P. S. ; Rowe, D. J. ; Repka, J.</creatorcontrib><description>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.2162332</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>ALGEBRA ; ALGORITHMS ; ANGULAR MOMENTUM ; ANNIHILATION OPERATORS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLECTIVE MODEL ; EIGENSTATES ; Exact sciences and technology ; GROUP THEORY ; HAMILTONIANS ; Mathematical methods in physics ; Mathematics ; MATRICES ; Physics ; QUADRUPOLES ; QUANTUM MECHANICS ; ROTATION ; Sciences and techniques of general use ; SO-3 GROUPS ; SO-5 GROUPS ; SPECTRA ; TRANSFORMATIONS ; VECTORS</subject><ispartof>Journal of mathematical physics, 2006-02, Vol.47 (2), p.023507-023507-25</ispartof><rights>American Institute of Physics</rights><rights>2006 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</citedby><cites>FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.2162332$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17646512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/20768730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, P. S.</creatorcontrib><creatorcontrib>Rowe, D. J.</creatorcontrib><creatorcontrib>Repka, J.</creatorcontrib><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><title>Journal of mathematical physics</title><description>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</description><subject>ALGEBRA</subject><subject>ALGORITHMS</subject><subject>ANGULAR MOMENTUM</subject><subject>ANNIHILATION OPERATORS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLECTIVE MODEL</subject><subject>EIGENSTATES</subject><subject>Exact sciences and technology</subject><subject>GROUP THEORY</subject><subject>HAMILTONIANS</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>MATRICES</subject><subject>Physics</subject><subject>QUADRUPOLES</subject><subject>QUANTUM MECHANICS</subject><subject>ROTATION</subject><subject>Sciences and techniques of general use</subject><subject>SO-3 GROUPS</subject><subject>SO-5 GROUPS</subject><subject>SPECTRA</subject><subject>TRANSFORMATIONS</subject><subject>VECTORS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0FABCtszddm04sgxS8oeFFPQkinE7uim5IEof_eXbfqQfSUDHnmncxDyCFnY860PONjwbWQUmyRAWdmUlS6NNtkwJgQhVDG7JK9lF4Y49woNSBPjwg5RAphiRGbTFN2GWleYohrGnx3o8_YYKyBRlxFTC3lch2a1D2nQE9oSUe0bqhr-lK25dylOu2THe9eEx5sziF5uLq8n94Us7vr2-nFrADFRS6UcxXo0qNHUCiY8tIIDvP268IzY6QQQk94tYBy7hTMpWNOaUSjBFTegRySoz43pFzbBHVGWEJomnY3K1ilTSVZS416CmJIKaK3q1i_ubi2nNlOnuV2I69lj3t25RK4Vx9dA3X6aai00iXvuPOe64Z-Wvk7tDdtv0zbznQbcPpXwHsLfzfb1cL_B_9e4QOmrZ2j</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Turner, P. S.</creator><creator>Rowe, D. J.</creator><creator>Repka, J.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060201</creationdate><title>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</title><author>Turner, P. S. ; Rowe, D. J. ; Repka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4aa7c65fefec4e204f3821cb7652f08832226917dc5ba4cb3a0a46ee842c7fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGEBRA</topic><topic>ALGORITHMS</topic><topic>ANGULAR MOMENTUM</topic><topic>ANNIHILATION OPERATORS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLECTIVE MODEL</topic><topic>EIGENSTATES</topic><topic>Exact sciences and technology</topic><topic>GROUP THEORY</topic><topic>HAMILTONIANS</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>MATRICES</topic><topic>Physics</topic><topic>QUADRUPOLES</topic><topic>QUANTUM MECHANICS</topic><topic>ROTATION</topic><topic>Sciences and techniques of general use</topic><topic>SO-3 GROUPS</topic><topic>SO-5 GROUPS</topic><topic>SPECTRA</topic><topic>TRANSFORMATIONS</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, P. S.</creatorcontrib><creatorcontrib>Rowe, D. J.</creatorcontrib><creatorcontrib>Repka, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, P. S.</au><au>Rowe, D. J.</au><au>Repka, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis</atitle><jtitle>Journal of mathematical physics</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>47</volume><issue>2</issue><spage>023507</spage><epage>023507-25</epage><pages>023507-023507-25</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2162332</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2006-02, Vol.47 (2), p.023507-023507-25 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_2162332 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | ALGEBRA ALGORITHMS ANGULAR MOMENTUM ANNIHILATION OPERATORS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COLLECTIVE MODEL EIGENSTATES Exact sciences and technology GROUP THEORY HAMILTONIANS Mathematical methods in physics Mathematics MATRICES Physics QUADRUPOLES QUANTUM MECHANICS ROTATION Sciences and techniques of general use SO-3 GROUPS SO-5 GROUPS SPECTRA TRANSFORMATIONS VECTORS |
title | Vector coherent state theory of the generic representations of so ( 5 ) in an so ( 3 ) basis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20coherent%20state%20theory%20of%20the%20generic%20representations%20of%20so%20(%205%20)%20in%20an%20so%20(%203%20)%20basis&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Turner,%20P.%20S.&rft.date=2006-02-01&rft.volume=47&rft.issue=2&rft.spage=023507&rft.epage=023507-25&rft.pages=023507-023507-25&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.2162332&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |