Stretching of material lines in shock-accelerated gaseous flows
A Mach 1.2 planar shock wave impulsively accelerates one of five different configurations of heavy-gas ( S F 6 ) cylinders surrounded by lighter gas (air), producing one or more pairs of interacting vortex columns. The interaction of the columns is investigated with planar laser-induced fluorescence...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2005-08, Vol.17 (8), p.082107-082107-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 082107-11 |
---|---|
container_issue | 8 |
container_start_page | 082107 |
container_title | Physics of fluids (1994) |
container_volume | 17 |
creator | Kumar, S. Orlicz, G. Tomkins, C. Goodenough, C. Prestridge, K. Vorobieff, P. Benjamin, R. |
description | A Mach 1.2 planar shock wave impulsively accelerates one of five different configurations of heavy-gas
(
S
F
6
)
cylinders surrounded by lighter gas (air), producing one or more pairs of interacting vortex columns. The interaction of the columns is investigated with planar laser-induced fluorescence in the plane normal to the axes of the cylinders. For the first time, we experimentally measure the early time stretching rate (in the first
220
μ
s
after shock interaction before the development of secondary instabilities) of material lines in shock-accelerated gaseous flows resulting from the Richtmyer-Meshkov instability at Reynolds number
∼
25
000
and Schmidt number
∼
1
. The early time specific stretching rate exponent associated with the stretching of material lines is measured in these five configurations and compared with the numerical computations of Yang
et al.
[AIAA J.
31, 854 (1993)] in some similar configurations and time range. The stretching rate is found to depend on the configuration and orientation of the gaseous cylinders, as these affect the refraction of the shock and thus vorticity deposition. Integral scale measurements fail to discriminate between the various configurations over the same time range, however, suggesting that integral measures are insufficient to characterize early time mixing in these flows. |
doi_str_mv | 10.1063/1.2031347 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_2031347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2031347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6610c4b61380759df469653b174ca658650a27d91ba89167ec4712e1d6b4e9d23</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK4e_Ae5eFDommnSpLkosvgFCx7Uc0jTZDfabUpSFf-9XbqwJ8XTDMwzzzAvQqdAZkA4vYRZTihQJvbQBEgpM8E539_0gmScUzhERym9EUKozPkEXT_30fZm5dslDg6vdW-j1w1ufGsT9i1Oq2DeM22MbWwcpjVe6mTDR8KuCV_pGB043SR7sq1T9Hp3-zJ_yBZP94_zm0VmaMn64TIQwyoOtCSikLVjXPKCViCY0bwoeUF0LmoJlS4lcGENE5BbqHnFrKxzOkXno9fEkFK0TnXRr3X8VkDU5nMFavv5wJ6NbKeT0Y2LujU-7RYEAM3pxnk1csn4Xvc-tL9LdzGp4NQY0yC4-LfgL_gzxB2outrRH2mjiEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stretching of material lines in shock-accelerated gaseous flows</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kumar, S. ; Orlicz, G. ; Tomkins, C. ; Goodenough, C. ; Prestridge, K. ; Vorobieff, P. ; Benjamin, R.</creator><creatorcontrib>Kumar, S. ; Orlicz, G. ; Tomkins, C. ; Goodenough, C. ; Prestridge, K. ; Vorobieff, P. ; Benjamin, R.</creatorcontrib><description>A Mach 1.2 planar shock wave impulsively accelerates one of five different configurations of heavy-gas
(
S
F
6
)
cylinders surrounded by lighter gas (air), producing one or more pairs of interacting vortex columns. The interaction of the columns is investigated with planar laser-induced fluorescence in the plane normal to the axes of the cylinders. For the first time, we experimentally measure the early time stretching rate (in the first
220
μ
s
after shock interaction before the development of secondary instabilities) of material lines in shock-accelerated gaseous flows resulting from the Richtmyer-Meshkov instability at Reynolds number
∼
25
000
and Schmidt number
∼
1
. The early time specific stretching rate exponent associated with the stretching of material lines is measured in these five configurations and compared with the numerical computations of Yang
et al.
[AIAA J.
31, 854 (1993)] in some similar configurations and time range. The stretching rate is found to depend on the configuration and orientation of the gaseous cylinders, as these affect the refraction of the shock and thus vorticity deposition. Integral scale measurements fail to discriminate between the various configurations over the same time range, however, suggesting that integral measures are insufficient to characterize early time mixing in these flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2031347</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Interfacial instability ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects</subject><ispartof>Physics of fluids (1994), 2005-08, Vol.17 (8), p.082107-082107-11</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-6610c4b61380759df469653b174ca658650a27d91ba89167ec4712e1d6b4e9d23</citedby><cites>FETCH-LOGICAL-c384t-6610c4b61380759df469653b174ca658650a27d91ba89167ec4712e1d6b4e9d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,1554,4498,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17113232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Orlicz, G.</creatorcontrib><creatorcontrib>Tomkins, C.</creatorcontrib><creatorcontrib>Goodenough, C.</creatorcontrib><creatorcontrib>Prestridge, K.</creatorcontrib><creatorcontrib>Vorobieff, P.</creatorcontrib><creatorcontrib>Benjamin, R.</creatorcontrib><title>Stretching of material lines in shock-accelerated gaseous flows</title><title>Physics of fluids (1994)</title><description>A Mach 1.2 planar shock wave impulsively accelerates one of five different configurations of heavy-gas
(
S
F
6
)
cylinders surrounded by lighter gas (air), producing one or more pairs of interacting vortex columns. The interaction of the columns is investigated with planar laser-induced fluorescence in the plane normal to the axes of the cylinders. For the first time, we experimentally measure the early time stretching rate (in the first
220
μ
s
after shock interaction before the development of secondary instabilities) of material lines in shock-accelerated gaseous flows resulting from the Richtmyer-Meshkov instability at Reynolds number
∼
25
000
and Schmidt number
∼
1
. The early time specific stretching rate exponent associated with the stretching of material lines is measured in these five configurations and compared with the numerical computations of Yang
et al.
[AIAA J.
31, 854 (1993)] in some similar configurations and time range. The stretching rate is found to depend on the configuration and orientation of the gaseous cylinders, as these affect the refraction of the shock and thus vorticity deposition. Integral scale measurements fail to discriminate between the various configurations over the same time range, however, suggesting that integral measures are insufficient to characterize early time mixing in these flows.</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Interfacial instability</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK4e_Ae5eFDommnSpLkosvgFCx7Uc0jTZDfabUpSFf-9XbqwJ8XTDMwzzzAvQqdAZkA4vYRZTihQJvbQBEgpM8E539_0gmScUzhERym9EUKozPkEXT_30fZm5dslDg6vdW-j1w1ufGsT9i1Oq2DeM22MbWwcpjVe6mTDR8KuCV_pGB043SR7sq1T9Hp3-zJ_yBZP94_zm0VmaMn64TIQwyoOtCSikLVjXPKCViCY0bwoeUF0LmoJlS4lcGENE5BbqHnFrKxzOkXno9fEkFK0TnXRr3X8VkDU5nMFavv5wJ6NbKeT0Y2LujU-7RYEAM3pxnk1csn4Xvc-tL9LdzGp4NQY0yC4-LfgL_gzxB2outrRH2mjiEE</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Kumar, S.</creator><creator>Orlicz, G.</creator><creator>Tomkins, C.</creator><creator>Goodenough, C.</creator><creator>Prestridge, K.</creator><creator>Vorobieff, P.</creator><creator>Benjamin, R.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050801</creationdate><title>Stretching of material lines in shock-accelerated gaseous flows</title><author>Kumar, S. ; Orlicz, G. ; Tomkins, C. ; Goodenough, C. ; Prestridge, K. ; Vorobieff, P. ; Benjamin, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6610c4b61380759df469653b174ca658650a27d91ba89167ec4712e1d6b4e9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Interfacial instability</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Orlicz, G.</creatorcontrib><creatorcontrib>Tomkins, C.</creatorcontrib><creatorcontrib>Goodenough, C.</creatorcontrib><creatorcontrib>Prestridge, K.</creatorcontrib><creatorcontrib>Vorobieff, P.</creatorcontrib><creatorcontrib>Benjamin, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S.</au><au>Orlicz, G.</au><au>Tomkins, C.</au><au>Goodenough, C.</au><au>Prestridge, K.</au><au>Vorobieff, P.</au><au>Benjamin, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching of material lines in shock-accelerated gaseous flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>17</volume><issue>8</issue><spage>082107</spage><epage>082107-11</epage><pages>082107-082107-11</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A Mach 1.2 planar shock wave impulsively accelerates one of five different configurations of heavy-gas
(
S
F
6
)
cylinders surrounded by lighter gas (air), producing one or more pairs of interacting vortex columns. The interaction of the columns is investigated with planar laser-induced fluorescence in the plane normal to the axes of the cylinders. For the first time, we experimentally measure the early time stretching rate (in the first
220
μ
s
after shock interaction before the development of secondary instabilities) of material lines in shock-accelerated gaseous flows resulting from the Richtmyer-Meshkov instability at Reynolds number
∼
25
000
and Schmidt number
∼
1
. The early time specific stretching rate exponent associated with the stretching of material lines is measured in these five configurations and compared with the numerical computations of Yang
et al.
[AIAA J.
31, 854 (1993)] in some similar configurations and time range. The stretching rate is found to depend on the configuration and orientation of the gaseous cylinders, as these affect the refraction of the shock and thus vorticity deposition. Integral scale measurements fail to discriminate between the various configurations over the same time range, however, suggesting that integral measures are insufficient to characterize early time mixing in these flows.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2031347</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2005-08, Vol.17 (8), p.082107-082107-11 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_2031347 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Interfacial instability Physics Shock-wave interactions and shock effects Shock-wave interactions and shockeffects |
title | Stretching of material lines in shock-accelerated gaseous flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20of%20material%20lines%20in%20shock-accelerated%20gaseous%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kumar,%20S.&rft.date=2005-08-01&rft.volume=17&rft.issue=8&rft.spage=082107&rft.epage=082107-11&rft.pages=082107-082107-11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2031347&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_2031347%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |