Stability analysis of the flow in a cubical cavity heated from below

A numerical study of bifurcations and stability of the steady convective flow of air in a cubical enclosure heated from below was carried out using a Galerkin spectral method. The set of basis functions was chosen so that all boundary conditions and the continuity equation were implicitly satisfied....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2004-10, Vol.16 (10), p.3639-3655
Hauptverfasser: Puigjaner, D., Herrero, J., Giralt, Francesc, Simó, C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3655
container_issue 10
container_start_page 3639
container_title Physics of fluids (1994)
container_volume 16
creator Puigjaner, D.
Herrero, J.
Giralt, Francesc
Simó, C.
description A numerical study of bifurcations and stability of the steady convective flow of air in a cubical enclosure heated from below was carried out using a Galerkin spectral method. The set of basis functions was chosen so that all boundary conditions and the continuity equation were implicitly satisfied. A parameter continuation method was applied to determine the steady solutions and bifurcations of the nonlinear governing equations as a function of Rayleigh number ( Ra ) for values of Ra up to 1.5×10 5 . The eigenvalue problem associated with the stability analysis of the steady solutions along the different branches of solutions was solved using the Arnoldi method. The convergence of the method was consistent with the number of modes used and the results were also verified by a numerical solution of the unsteady equations of motion using a finite-difference solver. Present results show that different stable convective flow patterns can coexist for different ranges of the Rayleigh number.
doi_str_mv 10.1063/1.1778031
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1778031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1778031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b6a6df1d0694edb23adcf392525a738960622c14d5db840c09c04d4fa551e9673</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFKzVhf9gtgqpdzLJTWYp9QkFF-o63MyDjqRJyYyV_HsTWnQhuLp38XE4h7FLAQsBKG_EQhRFCVIcsZmAUiUFIh5PfwEJohSn7CyEDwCQKsUZu3uNVPvGx4FTS80QfOCd43FtuWu6L-5bTlx_1l5TwzXtJri2FK3hru82vLajOmcnjppgLw53zt4f7t-WT8nq5fF5ebtKtEQZkxoJjRMGUGXW1Kkko91YI09zKmSpEDBNtchMbuoyAw1KQ2YyR3kurMJCztnVPlf3XQi9ddW29xvqh0pANc2vRHWYP9rrvQ3aR4q-a3_wrut_YbU17j_8N_kb-3loGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability analysis of the flow in a cubical cavity heated from below</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Puigjaner, D. ; Herrero, J. ; Giralt, Francesc ; Simó, C.</creator><creatorcontrib>Puigjaner, D. ; Herrero, J. ; Giralt, Francesc ; Simó, C.</creatorcontrib><description>A numerical study of bifurcations and stability of the steady convective flow of air in a cubical enclosure heated from below was carried out using a Galerkin spectral method. The set of basis functions was chosen so that all boundary conditions and the continuity equation were implicitly satisfied. A parameter continuation method was applied to determine the steady solutions and bifurcations of the nonlinear governing equations as a function of Rayleigh number ( Ra ) for values of Ra up to 1.5×10 5 . The eigenvalue problem associated with the stability analysis of the steady solutions along the different branches of solutions was solved using the Arnoldi method. The convergence of the method was consistent with the number of modes used and the results were also verified by a numerical solution of the unsteady equations of motion using a finite-difference solver. Present results show that different stable convective flow patterns can coexist for different ranges of the Rayleigh number.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1778031</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 2004-10, Vol.16 (10), p.3639-3655</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b6a6df1d0694edb23adcf392525a738960622c14d5db840c09c04d4fa551e9673</citedby><cites>FETCH-LOGICAL-c363t-b6a6df1d0694edb23adcf392525a738960622c14d5db840c09c04d4fa551e9673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Puigjaner, D.</creatorcontrib><creatorcontrib>Herrero, J.</creatorcontrib><creatorcontrib>Giralt, Francesc</creatorcontrib><creatorcontrib>Simó, C.</creatorcontrib><title>Stability analysis of the flow in a cubical cavity heated from below</title><title>Physics of fluids (1994)</title><description>A numerical study of bifurcations and stability of the steady convective flow of air in a cubical enclosure heated from below was carried out using a Galerkin spectral method. The set of basis functions was chosen so that all boundary conditions and the continuity equation were implicitly satisfied. A parameter continuation method was applied to determine the steady solutions and bifurcations of the nonlinear governing equations as a function of Rayleigh number ( Ra ) for values of Ra up to 1.5×10 5 . The eigenvalue problem associated with the stability analysis of the steady solutions along the different branches of solutions was solved using the Arnoldi method. The convergence of the method was consistent with the number of modes used and the results were also verified by a numerical solution of the unsteady equations of motion using a finite-difference solver. Present results show that different stable convective flow patterns can coexist for different ranges of the Rayleigh number.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFKzVhf9gtgqpdzLJTWYp9QkFF-o63MyDjqRJyYyV_HsTWnQhuLp38XE4h7FLAQsBKG_EQhRFCVIcsZmAUiUFIh5PfwEJohSn7CyEDwCQKsUZu3uNVPvGx4FTS80QfOCd43FtuWu6L-5bTlx_1l5TwzXtJri2FK3hru82vLajOmcnjppgLw53zt4f7t-WT8nq5fF5ebtKtEQZkxoJjRMGUGXW1Kkko91YI09zKmSpEDBNtchMbuoyAw1KQ2YyR3kurMJCztnVPlf3XQi9ddW29xvqh0pANc2vRHWYP9rrvQ3aR4q-a3_wrut_YbU17j_8N_kb-3loGA</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Puigjaner, D.</creator><creator>Herrero, J.</creator><creator>Giralt, Francesc</creator><creator>Simó, C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041001</creationdate><title>Stability analysis of the flow in a cubical cavity heated from below</title><author>Puigjaner, D. ; Herrero, J. ; Giralt, Francesc ; Simó, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b6a6df1d0694edb23adcf392525a738960622c14d5db840c09c04d4fa551e9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puigjaner, D.</creatorcontrib><creatorcontrib>Herrero, J.</creatorcontrib><creatorcontrib>Giralt, Francesc</creatorcontrib><creatorcontrib>Simó, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puigjaner, D.</au><au>Herrero, J.</au><au>Giralt, Francesc</au><au>Simó, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of the flow in a cubical cavity heated from below</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>16</volume><issue>10</issue><spage>3639</spage><epage>3655</epage><pages>3639-3655</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A numerical study of bifurcations and stability of the steady convective flow of air in a cubical enclosure heated from below was carried out using a Galerkin spectral method. The set of basis functions was chosen so that all boundary conditions and the continuity equation were implicitly satisfied. A parameter continuation method was applied to determine the steady solutions and bifurcations of the nonlinear governing equations as a function of Rayleigh number ( Ra ) for values of Ra up to 1.5×10 5 . The eigenvalue problem associated with the stability analysis of the steady solutions along the different branches of solutions was solved using the Arnoldi method. The convergence of the method was consistent with the number of modes used and the results were also verified by a numerical solution of the unsteady equations of motion using a finite-difference solver. Present results show that different stable convective flow patterns can coexist for different ranges of the Rayleigh number.</abstract><doi>10.1063/1.1778031</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2004-10, Vol.16 (10), p.3639-3655
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_1778031
source AIP Journals Complete; AIP Digital Archive
title Stability analysis of the flow in a cubical cavity heated from below
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20the%20flow%20in%20a%20cubical%20cavity%20heated%20from%20below&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Puigjaner,%20D.&rft.date=2004-10-01&rft.volume=16&rft.issue=10&rft.spage=3639&rft.epage=3655&rft.pages=3639-3655&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1778031&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1778031%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true