Excitation of Longitudinal Waves in a Bounded Collisionless Plasma

The relativistic form of the Vlasov equation is used to derive an integral equation for an externally produced electric field oscillating with frequency ω in a plasma bounded by two specularly reflecting walls. A tentative solution is constructed from exact solutions of the half‐space problem. It is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Fluids (U.S.) 1963-09, Vol.6 (9), p.1305-1312
1. Verfasser: Taylor, Edward C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 9
container_start_page 1305
container_title Physics of Fluids (U.S.)
container_volume 6
creator Taylor, Edward C.
description The relativistic form of the Vlasov equation is used to derive an integral equation for an externally produced electric field oscillating with frequency ω in a plasma bounded by two specularly reflecting walls. A tentative solution is constructed from exact solutions of the half‐space problem. It is shown that the exact equation is satisfied by the tentative solution up to terms which are exponentially small in the number of Debye lengths across the plasma. It happens that the bounded plasma acts like a medium with a dielectric constant κ=[1−ω p 2 /ω 2 (1−5KT/2mc 2 )] , unless the driving frequency lies in the small band ω p 2 (1−5KT/2mc 2 )
doi_str_mv 10.1063/1.1706899
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1706899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1706899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-53832b09ac5dc7e7083bc63e943611aae5c636faf973faf108bedb9041916d353</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVg_8geFPommnatDm6Zf2Agh4UjyFNU410E-l0xf33Rrpevcww8DDMvIScA1sCE_wallAyUUl5QJIMBE9zKatDkjDGIZVQwjE5QfxgLMsh5wlZrb-Nm_Tkgqehp03wb27ads7rgb7qL4vUearpKmx9Zztah2FwGPFgEenToHGjT8lRrwe0Z_u-IC-36-f6Pm0e7x7qmyY1mYQpLXjFs5ZJbYrOlLZkFW-N4FbmXABobYs4iV73suSxAqta27WS5SBBdLzgC3Ix7w04OYXxbGveTfDemknlQsT3q4guZ2TGgDjaXn2ObqPHnQKmfhNSoPYJRXs1W_yL4B_8Axf5ZL4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excitation of Longitudinal Waves in a Bounded Collisionless Plasma</title><source>Alma/SFX Local Collection</source><creator>Taylor, Edward C.</creator><creatorcontrib>Taylor, Edward C. ; Aerospace Corp., Los Angeles</creatorcontrib><description>The relativistic form of the Vlasov equation is used to derive an integral equation for an externally produced electric field oscillating with frequency ω in a plasma bounded by two specularly reflecting walls. A tentative solution is constructed from exact solutions of the half‐space problem. It is shown that the exact equation is satisfied by the tentative solution up to terms which are exponentially small in the number of Debye lengths across the plasma. It happens that the bounded plasma acts like a medium with a dielectric constant κ=[1−ω p 2 /ω 2 (1−5KT/2mc 2 )] , unless the driving frequency lies in the small band ω p 2 (1−5KT/2mc 2 )&lt;ω 2 &lt;ω p 2 (1+KT/2mc 2 ) . When the driving frequency satisfies the inequality, then the plasma also supports standing waves which satisfy the relativistic dispersion relation for longitudinal waves.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1706899</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><subject>CHARGED PARTICLES ; CONFIGURATION ; DEBYE LENGTH ; DIELECTRICS ; DIFFERENTIAL EQUATIONS ; ELECTRIC FIELDS ; EQUATIONS ; EXCITATION ; FREQUENCY ; INTERACTIONS ; OSCILLATIONS ; PHYSICS ; PLASMA ; PLASMA WAVES ; REFLECTION ; RELATIVITY THEORY ; SHIELDING ; SURFACES ; VLASOV EQUATION</subject><ispartof>Physics of Fluids (U.S.), 1963-09, Vol.6 (9), p.1305-1312</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-53832b09ac5dc7e7083bc63e943611aae5c636faf973faf108bedb9041916d353</citedby><cites>FETCH-LOGICAL-c291t-53832b09ac5dc7e7083bc63e943611aae5c636faf973faf108bedb9041916d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4660638$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Edward C.</creatorcontrib><creatorcontrib>Aerospace Corp., Los Angeles</creatorcontrib><title>Excitation of Longitudinal Waves in a Bounded Collisionless Plasma</title><title>Physics of Fluids (U.S.)</title><description>The relativistic form of the Vlasov equation is used to derive an integral equation for an externally produced electric field oscillating with frequency ω in a plasma bounded by two specularly reflecting walls. A tentative solution is constructed from exact solutions of the half‐space problem. It is shown that the exact equation is satisfied by the tentative solution up to terms which are exponentially small in the number of Debye lengths across the plasma. It happens that the bounded plasma acts like a medium with a dielectric constant κ=[1−ω p 2 /ω 2 (1−5KT/2mc 2 )] , unless the driving frequency lies in the small band ω p 2 (1−5KT/2mc 2 )&lt;ω 2 &lt;ω p 2 (1+KT/2mc 2 ) . When the driving frequency satisfies the inequality, then the plasma also supports standing waves which satisfy the relativistic dispersion relation for longitudinal waves.</description><subject>CHARGED PARTICLES</subject><subject>CONFIGURATION</subject><subject>DEBYE LENGTH</subject><subject>DIELECTRICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRIC FIELDS</subject><subject>EQUATIONS</subject><subject>EXCITATION</subject><subject>FREQUENCY</subject><subject>INTERACTIONS</subject><subject>OSCILLATIONS</subject><subject>PHYSICS</subject><subject>PLASMA</subject><subject>PLASMA WAVES</subject><subject>REFLECTION</subject><subject>RELATIVITY THEORY</subject><subject>SHIELDING</subject><subject>SURFACES</subject><subject>VLASOV EQUATION</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVg_8geFPommnatDm6Zf2Agh4UjyFNU410E-l0xf33Rrpevcww8DDMvIScA1sCE_wallAyUUl5QJIMBE9zKatDkjDGIZVQwjE5QfxgLMsh5wlZrb-Nm_Tkgqehp03wb27ads7rgb7qL4vUearpKmx9Zztah2FwGPFgEenToHGjT8lRrwe0Z_u-IC-36-f6Pm0e7x7qmyY1mYQpLXjFs5ZJbYrOlLZkFW-N4FbmXABobYs4iV73suSxAqta27WS5SBBdLzgC3Ix7w04OYXxbGveTfDemknlQsT3q4guZ2TGgDjaXn2ObqPHnQKmfhNSoPYJRXs1W_yL4B_8Axf5ZL4</recordid><startdate>196309</startdate><enddate>196309</enddate><creator>Taylor, Edward C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196309</creationdate><title>Excitation of Longitudinal Waves in a Bounded Collisionless Plasma</title><author>Taylor, Edward C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-53832b09ac5dc7e7083bc63e943611aae5c636faf973faf108bedb9041916d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>CHARGED PARTICLES</topic><topic>CONFIGURATION</topic><topic>DEBYE LENGTH</topic><topic>DIELECTRICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRIC FIELDS</topic><topic>EQUATIONS</topic><topic>EXCITATION</topic><topic>FREQUENCY</topic><topic>INTERACTIONS</topic><topic>OSCILLATIONS</topic><topic>PHYSICS</topic><topic>PLASMA</topic><topic>PLASMA WAVES</topic><topic>REFLECTION</topic><topic>RELATIVITY THEORY</topic><topic>SHIELDING</topic><topic>SURFACES</topic><topic>VLASOV EQUATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Edward C.</creatorcontrib><creatorcontrib>Aerospace Corp., Los Angeles</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of Fluids (U.S.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Edward C.</au><aucorp>Aerospace Corp., Los Angeles</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation of Longitudinal Waves in a Bounded Collisionless Plasma</atitle><jtitle>Physics of Fluids (U.S.)</jtitle><date>1963-09</date><risdate>1963</risdate><volume>6</volume><issue>9</issue><spage>1305</spage><epage>1312</epage><pages>1305-1312</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>The relativistic form of the Vlasov equation is used to derive an integral equation for an externally produced electric field oscillating with frequency ω in a plasma bounded by two specularly reflecting walls. A tentative solution is constructed from exact solutions of the half‐space problem. It is shown that the exact equation is satisfied by the tentative solution up to terms which are exponentially small in the number of Debye lengths across the plasma. It happens that the bounded plasma acts like a medium with a dielectric constant κ=[1−ω p 2 /ω 2 (1−5KT/2mc 2 )] , unless the driving frequency lies in the small band ω p 2 (1−5KT/2mc 2 )&lt;ω 2 &lt;ω p 2 (1+KT/2mc 2 ) . When the driving frequency satisfies the inequality, then the plasma also supports standing waves which satisfy the relativistic dispersion relation for longitudinal waves.</abstract><doi>10.1063/1.1706899</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Physics of Fluids (U.S.), 1963-09, Vol.6 (9), p.1305-1312
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_1706899
source Alma/SFX Local Collection
subjects CHARGED PARTICLES
CONFIGURATION
DEBYE LENGTH
DIELECTRICS
DIFFERENTIAL EQUATIONS
ELECTRIC FIELDS
EQUATIONS
EXCITATION
FREQUENCY
INTERACTIONS
OSCILLATIONS
PHYSICS
PLASMA
PLASMA WAVES
REFLECTION
RELATIVITY THEORY
SHIELDING
SURFACES
VLASOV EQUATION
title Excitation of Longitudinal Waves in a Bounded Collisionless Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation%20of%20Longitudinal%20Waves%20in%20a%20Bounded%20Collisionless%20Plasma&rft.jtitle=Physics%20of%20Fluids%20(U.S.)&rft.au=Taylor,%20Edward%20C.&rft.aucorp=Aerospace%20Corp.,%20Los%20Angeles&rft.date=1963-09&rft.volume=6&rft.issue=9&rft.spage=1305&rft.epage=1312&rft.pages=1305-1312&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1706899&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_1706899%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true