Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements

Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lew...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Physics of fluids (1958) 1961-01, Vol.4 (5), p.535-543
Hauptverfasser: Hartunian, R. A., Marrone, P. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 5
container_start_page 535
container_title The Physics of fluids (1958)
container_volume 4
creator Hartunian, R. A.
Marrone, P. V.
description Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.
doi_str_mv 10.1063/1.1706359
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1706359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1706359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</originalsourceid><addsrcrecordid>eNp90D1Ow0AQBeAVAokQKLiBRQeSw87--KdEARKkRBQEWmu9HisLxIt2NkU6jsAZOQmxnJrqTfHpafQYuwQ-AZ7JW5hAvk9dHrGRgEymqiyLYzbiXEJaQg6n7IzonXOhQMkRW745sp5c3CW-Te4dkbfORGySmSGkpA1-k7ysvf34_f5ZbWtM5mhifwfTUYshWaKhbcANdpHO2UlrPgkvDjlmr48Pq-k8XTzPnqZ3i9SKEmJa7181EppaY8tR6AbLptDS5qAFyELwjAvTWm1tzUttcpVzI4XGAjOrjVJyzK6GXk_RVWRdRLu2vuvQxkpxgKLo0fWAbPBEAdvqK7iNCbsKeNWPVUF1GGtvbwbbd5nofPcP_gNFWGqH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><source>Alma/SFX Local Collection</source><creator>Hartunian, R. A. ; Marrone, P. V.</creator><creatorcontrib>Hartunian, R. A. ; Marrone, P. V. ; Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><description>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1706359</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>BOUNDARY LAYERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DECOMPOSITION ; DIFFUSION ; EQUATIONS ; GASES ; HEAT TRANSFER ; LAYERS ; LEWIS NUMBER ; LOW TEMPERATURE ; MEASURED VALUES ; NUMERICALS ; OXYGEN ; QUANTITATIVE ANALYSIS ; SHOCK TUBES ; SHOCK WAVES ; SURFACES ; TEMPERATURE ; THERMOMETERS ; TUBES ; VISCOSITY</subject><ispartof>The Physics of fluids (1958), 1961-01, Vol.4 (5), p.535-543</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</citedby><cites>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4011884$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartunian, R. A.</creatorcontrib><creatorcontrib>Marrone, P. V.</creatorcontrib><creatorcontrib>Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><title>The Physics of fluids (1958)</title><description>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</description><subject>BOUNDARY LAYERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DECOMPOSITION</subject><subject>DIFFUSION</subject><subject>EQUATIONS</subject><subject>GASES</subject><subject>HEAT TRANSFER</subject><subject>LAYERS</subject><subject>LEWIS NUMBER</subject><subject>LOW TEMPERATURE</subject><subject>MEASURED VALUES</subject><subject>NUMERICALS</subject><subject>OXYGEN</subject><subject>QUANTITATIVE ANALYSIS</subject><subject>SHOCK TUBES</subject><subject>SHOCK WAVES</subject><subject>SURFACES</subject><subject>TEMPERATURE</subject><subject>THERMOMETERS</subject><subject>TUBES</subject><subject>VISCOSITY</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNp90D1Ow0AQBeAVAokQKLiBRQeSw87--KdEARKkRBQEWmu9HisLxIt2NkU6jsAZOQmxnJrqTfHpafQYuwQ-AZ7JW5hAvk9dHrGRgEymqiyLYzbiXEJaQg6n7IzonXOhQMkRW745sp5c3CW-Te4dkbfORGySmSGkpA1-k7ysvf34_f5ZbWtM5mhifwfTUYshWaKhbcANdpHO2UlrPgkvDjlmr48Pq-k8XTzPnqZ3i9SKEmJa7181EppaY8tR6AbLptDS5qAFyELwjAvTWm1tzUttcpVzI4XGAjOrjVJyzK6GXk_RVWRdRLu2vuvQxkpxgKLo0fWAbPBEAdvqK7iNCbsKeNWPVUF1GGtvbwbbd5nofPcP_gNFWGqH</recordid><startdate>19610101</startdate><enddate>19610101</enddate><creator>Hartunian, R. A.</creator><creator>Marrone, P. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610101</creationdate><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><author>Hartunian, R. A. ; Marrone, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>BOUNDARY LAYERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DECOMPOSITION</topic><topic>DIFFUSION</topic><topic>EQUATIONS</topic><topic>GASES</topic><topic>HEAT TRANSFER</topic><topic>LAYERS</topic><topic>LEWIS NUMBER</topic><topic>LOW TEMPERATURE</topic><topic>MEASURED VALUES</topic><topic>NUMERICALS</topic><topic>OXYGEN</topic><topic>QUANTITATIVE ANALYSIS</topic><topic>SHOCK TUBES</topic><topic>SHOCK WAVES</topic><topic>SURFACES</topic><topic>TEMPERATURE</topic><topic>THERMOMETERS</topic><topic>TUBES</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartunian, R. A.</creatorcontrib><creatorcontrib>Marrone, P. V.</creatorcontrib><creatorcontrib>Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartunian, R. A.</au><au>Marrone, P. V.</au><aucorp>Cornell Aeronautical Lab., Inc., Buffalo</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1961-01-01</date><risdate>1961</risdate><volume>4</volume><issue>5</issue><spage>535</spage><epage>543</epage><pages>535-543</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1706359</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1961-01, Vol.4 (5), p.535-543
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_1706359
source Alma/SFX Local Collection
subjects BOUNDARY LAYERS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DECOMPOSITION
DIFFUSION
EQUATIONS
GASES
HEAT TRANSFER
LAYERS
LEWIS NUMBER
LOW TEMPERATURE
MEASURED VALUES
NUMERICALS
OXYGEN
QUANTITATIVE ANALYSIS
SHOCK TUBES
SHOCK WAVES
SURFACES
TEMPERATURE
THERMOMETERS
TUBES
VISCOSITY
title Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20of%20Dissociated%20Gases%20from%20Shock%E2%80%90Tube%20Heat%E2%80%90Transfer%20Measurements&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Hartunian,%20R.%20A.&rft.aucorp=Cornell%20Aeronautical%20Lab.,%20Inc.,%20Buffalo&rft.date=1961-01-01&rft.volume=4&rft.issue=5&rft.spage=535&rft.epage=543&rft.pages=535-543&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1706359&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1706359%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true