Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements
Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lew...
Gespeichert in:
Veröffentlicht in: | The Physics of fluids (1958) 1961-01, Vol.4 (5), p.535-543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 543 |
---|---|
container_issue | 5 |
container_start_page | 535 |
container_title | The Physics of fluids (1958) |
container_volume | 4 |
creator | Hartunian, R. A. Marrone, P. V. |
description | Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula. |
doi_str_mv | 10.1063/1.1706359 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1706359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1706359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</originalsourceid><addsrcrecordid>eNp90D1Ow0AQBeAVAokQKLiBRQeSw87--KdEARKkRBQEWmu9HisLxIt2NkU6jsAZOQmxnJrqTfHpafQYuwQ-AZ7JW5hAvk9dHrGRgEymqiyLYzbiXEJaQg6n7IzonXOhQMkRW745sp5c3CW-Te4dkbfORGySmSGkpA1-k7ysvf34_f5ZbWtM5mhifwfTUYshWaKhbcANdpHO2UlrPgkvDjlmr48Pq-k8XTzPnqZ3i9SKEmJa7181EppaY8tR6AbLptDS5qAFyELwjAvTWm1tzUttcpVzI4XGAjOrjVJyzK6GXk_RVWRdRLu2vuvQxkpxgKLo0fWAbPBEAdvqK7iNCbsKeNWPVUF1GGtvbwbbd5nofPcP_gNFWGqH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><source>Alma/SFX Local Collection</source><creator>Hartunian, R. A. ; Marrone, P. V.</creator><creatorcontrib>Hartunian, R. A. ; Marrone, P. V. ; Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><description>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1706359</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>BOUNDARY LAYERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DECOMPOSITION ; DIFFUSION ; EQUATIONS ; GASES ; HEAT TRANSFER ; LAYERS ; LEWIS NUMBER ; LOW TEMPERATURE ; MEASURED VALUES ; NUMERICALS ; OXYGEN ; QUANTITATIVE ANALYSIS ; SHOCK TUBES ; SHOCK WAVES ; SURFACES ; TEMPERATURE ; THERMOMETERS ; TUBES ; VISCOSITY</subject><ispartof>The Physics of fluids (1958), 1961-01, Vol.4 (5), p.535-543</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</citedby><cites>FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4011884$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartunian, R. A.</creatorcontrib><creatorcontrib>Marrone, P. V.</creatorcontrib><creatorcontrib>Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><title>The Physics of fluids (1958)</title><description>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</description><subject>BOUNDARY LAYERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DECOMPOSITION</subject><subject>DIFFUSION</subject><subject>EQUATIONS</subject><subject>GASES</subject><subject>HEAT TRANSFER</subject><subject>LAYERS</subject><subject>LEWIS NUMBER</subject><subject>LOW TEMPERATURE</subject><subject>MEASURED VALUES</subject><subject>NUMERICALS</subject><subject>OXYGEN</subject><subject>QUANTITATIVE ANALYSIS</subject><subject>SHOCK TUBES</subject><subject>SHOCK WAVES</subject><subject>SURFACES</subject><subject>TEMPERATURE</subject><subject>THERMOMETERS</subject><subject>TUBES</subject><subject>VISCOSITY</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1961</creationdate><recordtype>article</recordtype><recordid>eNp90D1Ow0AQBeAVAokQKLiBRQeSw87--KdEARKkRBQEWmu9HisLxIt2NkU6jsAZOQmxnJrqTfHpafQYuwQ-AZ7JW5hAvk9dHrGRgEymqiyLYzbiXEJaQg6n7IzonXOhQMkRW745sp5c3CW-Te4dkbfORGySmSGkpA1-k7ysvf34_f5ZbWtM5mhifwfTUYshWaKhbcANdpHO2UlrPgkvDjlmr48Pq-k8XTzPnqZ3i9SKEmJa7181EppaY8tR6AbLptDS5qAFyELwjAvTWm1tzUttcpVzI4XGAjOrjVJyzK6GXk_RVWRdRLu2vuvQxkpxgKLo0fWAbPBEAdvqK7iNCbsKeNWPVUF1GGtvbwbbd5nofPcP_gNFWGqH</recordid><startdate>19610101</startdate><enddate>19610101</enddate><creator>Hartunian, R. A.</creator><creator>Marrone, P. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19610101</creationdate><title>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</title><author>Hartunian, R. A. ; Marrone, P. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b106a31db5ef0e25de9d853c715213820602afc5ccb095a7470a325e8e6c5a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1961</creationdate><topic>BOUNDARY LAYERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DECOMPOSITION</topic><topic>DIFFUSION</topic><topic>EQUATIONS</topic><topic>GASES</topic><topic>HEAT TRANSFER</topic><topic>LAYERS</topic><topic>LEWIS NUMBER</topic><topic>LOW TEMPERATURE</topic><topic>MEASURED VALUES</topic><topic>NUMERICALS</topic><topic>OXYGEN</topic><topic>QUANTITATIVE ANALYSIS</topic><topic>SHOCK TUBES</topic><topic>SHOCK WAVES</topic><topic>SURFACES</topic><topic>TEMPERATURE</topic><topic>THERMOMETERS</topic><topic>TUBES</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartunian, R. A.</creatorcontrib><creatorcontrib>Marrone, P. V.</creatorcontrib><creatorcontrib>Cornell Aeronautical Lab., Inc., Buffalo</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartunian, R. A.</au><au>Marrone, P. V.</au><aucorp>Cornell Aeronautical Lab., Inc., Buffalo</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1961-01-01</date><risdate>1961</risdate><volume>4</volume><issue>5</issue><spage>535</spage><epage>543</epage><pages>535-543</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Measurements of the heat transfer from dissociated oxygen to the sidewall of a shock tube have been made over a wide range of operating conditions using the methods of thin‐film thermometry. Numerical solutions of the equilibrium shock‐tube wall boundary layer equations for several values of the Lewis number have been obtained. The results show the heat transfer to be very weakly dependent upon the Lewis number. This fact indicates the shock‐tube wall boundary layer to be a source for experimental determinations of the viscosity coefficient of dissociated gases. Experimental data obtained in the equilibrium boundary layer regime agree with the theory at the low temperatures, and rise above the theoretical curves at the higher temperatures. This difference between theory and experiment is attributed to the uncertainty in the calculated viscosity coefficient used in the theory. The experiments were then used to determine new values for the viscosity coefficient of high temperature, dissociated oxygen. These values are considerably higher than those predicted theoretically using a Lennard‐Jones potential or Sutherland's formula.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1706359</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | The Physics of fluids (1958), 1961-01, Vol.4 (5), p.535-543 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1706359 |
source | Alma/SFX Local Collection |
subjects | BOUNDARY LAYERS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DECOMPOSITION DIFFUSION EQUATIONS GASES HEAT TRANSFER LAYERS LEWIS NUMBER LOW TEMPERATURE MEASURED VALUES NUMERICALS OXYGEN QUANTITATIVE ANALYSIS SHOCK TUBES SHOCK WAVES SURFACES TEMPERATURE THERMOMETERS TUBES VISCOSITY |
title | Viscosity of Dissociated Gases from Shock‐Tube Heat‐Transfer Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20of%20Dissociated%20Gases%20from%20Shock%E2%80%90Tube%20Heat%E2%80%90Transfer%20Measurements&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Hartunian,%20R.%20A.&rft.aucorp=Cornell%20Aeronautical%20Lab.,%20Inc.,%20Buffalo&rft.date=1961-01-01&rft.volume=4&rft.issue=5&rft.spage=535&rft.epage=543&rft.pages=535-543&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1706359&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1706359%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |