Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups
The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967) 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2255 |
---|---|
container_issue | 11 |
container_start_page | 2250 |
container_title | J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967) |
container_volume | 8 |
creator | Ališauskas, S. J. Jucys, A. P. |
description | The substitutions leaving the character of the representation of the group SUn
invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU
3 is demonstrated. |
doi_str_mv | 10.1063/1.1705150 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1705150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8HiTWHrJJuP6VGKVrEiWHsO22yCkXZ3SVKh_970A7x7mmHmmZd3XkKuKYwoyOqejqgCQQWckAEFHJdKCjwlAwDGSsYRz8lFjN8AlCLnA_I63yxj8mmTfNcW09Bt-qJum-LNh9CF4sO6lTX73Xy7XtsUtoXPfW-Nr1fFovWpzqP9XbwkZ65eRXt1rEOyeHr8nDyXs_fpy-RhVpqKyVTWoCorpJRIG-fQIFquGkBEBksh3LiSIJ2jaJiiS0AFDY5BcNMwx6yDakhuDrpddq6j8cmaL9O1bXaquRBcCZmh2wNkQhdjsE73wa-zWU1B76LSVB-jyuzdgd1p1btv_wf_dOEP1H3jql8N_nab</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><source>AIP Digital Archive</source><creator>Ališauskas, S. J. ; Jucys, A. P.</creator><creatorcontrib>Ališauskas, S. J. ; Jucys, A. P. ; Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><description>The substitutions leaving the character of the representation of the group SUn
invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU
3 is demonstrated.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1705150</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>ELEMENTARY PARTICLES ; ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU ; GROUP THEORY ; MATHEMATICS ; MULTIPLICITY ; N34310 -Physics (High Energy)-Particle Invariance Principles & Symmetry-General ; OPERATORS ; SU GROUP ; SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</subject><ispartof>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</citedby><cites>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1705150$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4554756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ališauskas, S. J.</creatorcontrib><creatorcontrib>Jucys, A. P.</creatorcontrib><creatorcontrib>Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><title>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</title><description>The substitutions leaving the character of the representation of the group SUn
invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU
3 is demonstrated.</description><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU</subject><subject>GROUP THEORY</subject><subject>MATHEMATICS</subject><subject>MULTIPLICITY</subject><subject>N34310 -Physics (High Energy)-Particle Invariance Principles & Symmetry-General</subject><subject>OPERATORS</subject><subject>SU GROUP</subject><subject>SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8HiTWHrJJuP6VGKVrEiWHsO22yCkXZ3SVKh_970A7x7mmHmmZd3XkKuKYwoyOqejqgCQQWckAEFHJdKCjwlAwDGSsYRz8lFjN8AlCLnA_I63yxj8mmTfNcW09Bt-qJum-LNh9CF4sO6lTX73Xy7XtsUtoXPfW-Nr1fFovWpzqP9XbwkZ65eRXt1rEOyeHr8nDyXs_fpy-RhVpqKyVTWoCorpJRIG-fQIFquGkBEBksh3LiSIJ2jaJiiS0AFDY5BcNMwx6yDakhuDrpddq6j8cmaL9O1bXaquRBcCZmh2wNkQhdjsE73wa-zWU1B76LSVB-jyuzdgd1p1btv_wf_dOEP1H3jql8N_nab</recordid><startdate>19670101</startdate><enddate>19670101</enddate><creator>Ališauskas, S. J.</creator><creator>Jucys, A. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19670101</creationdate><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><author>Ališauskas, S. J. ; Jucys, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU</topic><topic>GROUP THEORY</topic><topic>MATHEMATICS</topic><topic>MULTIPLICITY</topic><topic>N34310 -Physics (High Energy)-Particle Invariance Principles & Symmetry-General</topic><topic>OPERATORS</topic><topic>SU GROUP</topic><topic>SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ališauskas, S. J.</creatorcontrib><creatorcontrib>Jucys, A. P.</creatorcontrib><creatorcontrib>Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ališauskas, S. J.</au><au>Jucys, A. P.</au><aucorp>Inst. of Physics and Mathematics, Vilnius, USSR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</atitle><jtitle>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</jtitle><date>1967-01-01</date><risdate>1967</risdate><volume>8</volume><issue>11</issue><spage>2250</spage><epage>2255</epage><pages>2250-2255</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The substitutions leaving the character of the representation of the group SUn
invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU
3 is demonstrated.</abstract><doi>10.1063/1.1705150</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1705150 |
source | AIP Digital Archive |
subjects | ELEMENTARY PARTICLES ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU GROUP THEORY MATHEMATICS MULTIPLICITY N34310 -Physics (High Energy)-Particle Invariance Principles & Symmetry-General OPERATORS SU GROUP SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in |
title | Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitution%20Group%20and%20Mirror%20Reflection%20Symmetry%20in%20Special%20Unitary%20Groups&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.),%208:%202250-5(Nov.%201967)&rft.au=Ali%C5%A1auskas,%20S.%20J.&rft.aucorp=Inst.%20of%20Physics%20and%20Mathematics,%20Vilnius,%20USSR&rft.date=1967-01-01&rft.volume=8&rft.issue=11&rft.spage=2250&rft.epage=2255&rft.pages=2250-2255&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1705150&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |