Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups

The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967) 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255
Hauptverfasser: Ališauskas, S. J., Jucys, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2255
container_issue 11
container_start_page 2250
container_title J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)
container_volume 8
creator Ališauskas, S. J.
Jucys, A. P.
description The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU 3 is demonstrated.
doi_str_mv 10.1063/1.1705150
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1705150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8HiTWHrJJuP6VGKVrEiWHsO22yCkXZ3SVKh_970A7x7mmHmmZd3XkKuKYwoyOqejqgCQQWckAEFHJdKCjwlAwDGSsYRz8lFjN8AlCLnA_I63yxj8mmTfNcW09Bt-qJum-LNh9CF4sO6lTX73Xy7XtsUtoXPfW-Nr1fFovWpzqP9XbwkZ65eRXt1rEOyeHr8nDyXs_fpy-RhVpqKyVTWoCorpJRIG-fQIFquGkBEBksh3LiSIJ2jaJiiS0AFDY5BcNMwx6yDakhuDrpddq6j8cmaL9O1bXaquRBcCZmh2wNkQhdjsE73wa-zWU1B76LSVB-jyuzdgd1p1btv_wf_dOEP1H3jql8N_nab</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><source>AIP Digital Archive</source><creator>Ališauskas, S. J. ; Jucys, A. P.</creator><creatorcontrib>Ališauskas, S. J. ; Jucys, A. P. ; Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><description>The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU 3 is demonstrated.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1705150</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>ELEMENTARY PARTICLES ; ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU ; GROUP THEORY ; MATHEMATICS ; MULTIPLICITY ; N34310 -Physics (High Energy)-Particle Invariance Principles &amp; Symmetry-General ; OPERATORS ; SU GROUP ; SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</subject><ispartof>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</citedby><cites>FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1705150$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1559,27924,27925,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4554756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ališauskas, S. J.</creatorcontrib><creatorcontrib>Jucys, A. P.</creatorcontrib><creatorcontrib>Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><title>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</title><description>The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU 3 is demonstrated.</description><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU</subject><subject>GROUP THEORY</subject><subject>MATHEMATICS</subject><subject>MULTIPLICITY</subject><subject>N34310 -Physics (High Energy)-Particle Invariance Principles &amp; Symmetry-General</subject><subject>OPERATORS</subject><subject>SU GROUP</subject><subject>SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8HiTWHrJJuP6VGKVrEiWHsO22yCkXZ3SVKh_970A7x7mmHmmZd3XkKuKYwoyOqejqgCQQWckAEFHJdKCjwlAwDGSsYRz8lFjN8AlCLnA_I63yxj8mmTfNcW09Bt-qJum-LNh9CF4sO6lTX73Xy7XtsUtoXPfW-Nr1fFovWpzqP9XbwkZ65eRXt1rEOyeHr8nDyXs_fpy-RhVpqKyVTWoCorpJRIG-fQIFquGkBEBksh3LiSIJ2jaJiiS0AFDY5BcNMwx6yDakhuDrpddq6j8cmaL9O1bXaquRBcCZmh2wNkQhdjsE73wa-zWU1B76LSVB-jyuzdgd1p1btv_wf_dOEP1H3jql8N_nab</recordid><startdate>19670101</startdate><enddate>19670101</enddate><creator>Ališauskas, S. J.</creator><creator>Jucys, A. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19670101</creationdate><title>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</title><author>Ališauskas, S. J. ; Jucys, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a073e566681dff8c88e47d088820b55f93606ff18c271b0870d89054cd2f2ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU</topic><topic>GROUP THEORY</topic><topic>MATHEMATICS</topic><topic>MULTIPLICITY</topic><topic>N34310 -Physics (High Energy)-Particle Invariance Principles &amp; Symmetry-General</topic><topic>OPERATORS</topic><topic>SU GROUP</topic><topic>SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ališauskas, S. J.</creatorcontrib><creatorcontrib>Jucys, A. P.</creatorcontrib><creatorcontrib>Inst. of Physics and Mathematics, Vilnius, USSR</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ališauskas, S. J.</au><au>Jucys, A. P.</au><aucorp>Inst. of Physics and Mathematics, Vilnius, USSR</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups</atitle><jtitle>J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967)</jtitle><date>1967-01-01</date><risdate>1967</risdate><volume>8</volume><issue>11</issue><spage>2250</spage><epage>2255</epage><pages>2250-2255</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The substitutions leaving the character of the representation of the group SUn invariant are considered. The phases induced by these substitutions on the basis functions are established. The substitution giving the contragrediency transformation has been found. This transformation is interpreted as the reflection of the subspace of commuting operators and the corresponding coordinate systems with respect to the rest subspace. The application of the substitution group to the resolution of multiplicity problem in the case of SU 3 is demonstrated.</abstract><doi>10.1063/1.1705150</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N.Y.), 8: 2250-5(Nov. 1967), 1967-01, Vol.8 (11), p.2250-2255
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1705150
source AIP Digital Archive
subjects ELEMENTARY PARTICLES
ELEMENTARY PARTICLES/symmetry for, substitution group and mirror reflection symmetry in SU
GROUP THEORY
MATHEMATICS
MULTIPLICITY
N34310 -Physics (High Energy)-Particle Invariance Principles & Symmetry-General
OPERATORS
SU GROUP
SYMMETRY GROUPS SU/substitution group and mirror reflection symmetry in
title Substitution Group and Mirror Reflection Symmetry in Special Unitary Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitution%20Group%20and%20Mirror%20Reflection%20Symmetry%20in%20Special%20Unitary%20Groups&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.),%208:%202250-5(Nov.%201967)&rft.au=Ali%C5%A1auskas,%20S.%20J.&rft.aucorp=Inst.%20of%20Physics%20and%20Mathematics,%20Vilnius,%20USSR&rft.date=1967-01-01&rft.volume=8&rft.issue=11&rft.spage=2250&rft.epage=2255&rft.pages=2250-2255&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1705150&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true