Multipole Theory in the Time Domain

Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a Fourier integral of a sinusoidally time‐varying multipole expansion. It is then shown that the integrals over ω of the r‐ and t‐dependent part of the multipole terms can be replaced by differential operator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1966-04, Vol.7 (4), p.634-640
1. Verfasser: Granzow, Kenneth D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 4
container_start_page 634
container_title Journal of mathematical physics
container_volume 7
creator Granzow, Kenneth D.
description Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a Fourier integral of a sinusoidally time‐varying multipole expansion. It is then shown that the integrals over ω of the r‐ and t‐dependent part of the multipole terms can be replaced by differential operators operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is obtained that does not explicitly contain the frequency spectrum of the multipoles. Given the value of Er (for electric multipoles, or Br for magnetic multipoles) as a function of time on the surface of a sphere, expressions for the multipole expansions of all the spherical field components are derived. The method employs a convolution integral and is useful in problems involving a very broad frequency spectrum.
doi_str_mv 10.1063/1.1704976
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1704976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-92f800af1eaa9fb4f3858169ad457be436da0d52236f1eeeec52286f68c0fbba3</originalsourceid><addsrcrecordid>eNp9z0FLwzAUB_AgCtbpwW9Q8KTQ-V6apslR5nSDiZd5DmmbsEjblKQK-_ZWNvQg-C7vPfjxhz8h1whzBJ7f4xxLYLLkJyRBEDIreSFOSQJAaUaZEOfkIsZ3AETBWEJuXj7a0Q2-Nel2Z3zYp65Px930uc6kj77Trr8kZ1a30Vwd94y8PS23i1W2eX1eLx42WU1lOWaSWgGgLRqtpa2YzUUhkEvdsKKsDMt5o6EpKM35ZKapp1twy0UNtqp0PiO3h9w6-BiDsWoIrtNhrxDUdzuF6thusncHG2s36tH5_gd_-vAL1dDY__Df5C9ARlzL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multipole Theory in the Time Domain</title><source>AIP Digital Archive</source><creator>Granzow, Kenneth D.</creator><creatorcontrib>Granzow, Kenneth D.</creatorcontrib><description>Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a Fourier integral of a sinusoidally time‐varying multipole expansion. It is then shown that the integrals over ω of the r‐ and t‐dependent part of the multipole terms can be replaced by differential operators operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is obtained that does not explicitly contain the frequency spectrum of the multipoles. Given the value of Er (for electric multipoles, or Br for magnetic multipoles) as a function of time on the surface of a sphere, expressions for the multipole expansions of all the spherical field components are derived. The method employs a convolution integral and is useful in problems involving a very broad frequency spectrum.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1704976</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1966-04, Vol.7 (4), p.634-640</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-92f800af1eaa9fb4f3858169ad457be436da0d52236f1eeeec52286f68c0fbba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1704976$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids></links><search><creatorcontrib>Granzow, Kenneth D.</creatorcontrib><title>Multipole Theory in the Time Domain</title><title>Journal of mathematical physics</title><description>Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a Fourier integral of a sinusoidally time‐varying multipole expansion. It is then shown that the integrals over ω of the r‐ and t‐dependent part of the multipole terms can be replaced by differential operators operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is obtained that does not explicitly contain the frequency spectrum of the multipoles. Given the value of Er (for electric multipoles, or Br for magnetic multipoles) as a function of time on the surface of a sphere, expressions for the multipole expansions of all the spherical field components are derived. The method employs a convolution integral and is useful in problems involving a very broad frequency spectrum.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNp9z0FLwzAUB_AgCtbpwW9Q8KTQ-V6apslR5nSDiZd5DmmbsEjblKQK-_ZWNvQg-C7vPfjxhz8h1whzBJ7f4xxLYLLkJyRBEDIreSFOSQJAaUaZEOfkIsZ3AETBWEJuXj7a0Q2-Nel2Z3zYp65Px930uc6kj77Trr8kZ1a30Vwd94y8PS23i1W2eX1eLx42WU1lOWaSWgGgLRqtpa2YzUUhkEvdsKKsDMt5o6EpKM35ZKapp1twy0UNtqp0PiO3h9w6-BiDsWoIrtNhrxDUdzuF6thusncHG2s36tH5_gd_-vAL1dDY__Df5C9ARlzL</recordid><startdate>196604</startdate><enddate>196604</enddate><creator>Granzow, Kenneth D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196604</creationdate><title>Multipole Theory in the Time Domain</title><author>Granzow, Kenneth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-92f800af1eaa9fb4f3858169ad457be436da0d52236f1eeeec52286f68c0fbba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granzow, Kenneth D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granzow, Kenneth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipole Theory in the Time Domain</atitle><jtitle>Journal of mathematical physics</jtitle><date>1966-04</date><risdate>1966</risdate><volume>7</volume><issue>4</issue><spage>634</spage><epage>640</epage><pages>634-640</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Spherical outgoing waves of arbitrary time dependence are first written in the usual way as a Fourier integral of a sinusoidally time‐varying multipole expansion. It is then shown that the integrals over ω of the r‐ and t‐dependent part of the multipole terms can be replaced by differential operators operating on arbitrary functions of retarded time. Thus a form of the multipole expansion is obtained that does not explicitly contain the frequency spectrum of the multipoles. Given the value of Er (for electric multipoles, or Br for magnetic multipoles) as a function of time on the surface of a sphere, expressions for the multipole expansions of all the spherical field components are derived. The method employs a convolution integral and is useful in problems involving a very broad frequency spectrum.</abstract><doi>10.1063/1.1704976</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1966-04, Vol.7 (4), p.634-640
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1704976
source AIP Digital Archive
title Multipole Theory in the Time Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipole%20Theory%20in%20the%20Time%20Domain&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Granzow,%20Kenneth%20D.&rft.date=1966-04&rft.volume=7&rft.issue=4&rft.spage=634&rft.epage=640&rft.pages=634-640&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1704976&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true