Some Physical Solutions of Dirac‐Type Equations
The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys 1962-01, Vol.3 (1), p.70-74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | J. Math. Phys |
container_volume | 3 |
creator | Hale, Jack K. Stokes, Arnold P. |
description | The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases. |
doi_str_mv | 10.1063/1.1703789 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1703789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcY3ClMvTfJNMlSav2BgkLrOqR3EjrSNnUyFbrzEXxGn8T-oQvB1V3cjwPnMHaO0EHoimvsoAKhtDlgLQRtctUt9CFrAXCec6n1MTtJ6RUAUUvZYjiMM589T1apIjfNhnG6bKo4T1kM2W1VO_r6-BytFj7rvy3d9nPKjoKbJn-2v232ctcf9R7ywdP9Y-9mkJPgssnJedISfBByDKJ0xivnFJLH8ViARs8915xrMJwEBEXKyBJkoQLHENCINrvY5cbUVDZR1XiaUJzPPTVWKgOF5mt0uUNUx5RqH-yirmauXlkEuxnEot0PsrZXO7vJ2nb5we-x_oV2UYb_8N_kb7fXblk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Physical Solutions of Dirac‐Type Equations</title><source>AIP Digital Archive</source><creator>Hale, Jack K. ; Stokes, Arnold P.</creator><creatorcontrib>Hale, Jack K. ; Stokes, Arnold P. ; RIAS, Baltimore</creatorcontrib><description>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1703789</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>DIFFERENTIAL EQUATIONS ; DIRAC EQUATIONS ; ELECTRODYNAMICS ; MATHEMATICS ; MATHEMATICS AND COMPUTERS ; QUANTUM MECHANICS ; RELATIVITY THEORY ; VELOCITY</subject><ispartof>J. Math. Phys, 1962-01, Vol.3 (1), p.70-74</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</citedby><cites>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1703789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4790582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hale, Jack K.</creatorcontrib><creatorcontrib>Stokes, Arnold P.</creatorcontrib><creatorcontrib>RIAS, Baltimore</creatorcontrib><title>Some Physical Solutions of Dirac‐Type Equations</title><title>J. Math. Phys</title><description>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</description><subject>DIFFERENTIAL EQUATIONS</subject><subject>DIRAC EQUATIONS</subject><subject>ELECTRODYNAMICS</subject><subject>MATHEMATICS</subject><subject>MATHEMATICS AND COMPUTERS</subject><subject>QUANTUM MECHANICS</subject><subject>RELATIVITY THEORY</subject><subject>VELOCITY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1962</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcY3ClMvTfJNMlSav2BgkLrOqR3EjrSNnUyFbrzEXxGn8T-oQvB1V3cjwPnMHaO0EHoimvsoAKhtDlgLQRtctUt9CFrAXCec6n1MTtJ6RUAUUvZYjiMM589T1apIjfNhnG6bKo4T1kM2W1VO_r6-BytFj7rvy3d9nPKjoKbJn-2v232ctcf9R7ywdP9Y-9mkJPgssnJedISfBByDKJ0xivnFJLH8ViARs8915xrMJwEBEXKyBJkoQLHENCINrvY5cbUVDZR1XiaUJzPPTVWKgOF5mt0uUNUx5RqH-yirmauXlkEuxnEot0PsrZXO7vJ2nb5we-x_oV2UYb_8N_kb7fXblk</recordid><startdate>196201</startdate><enddate>196201</enddate><creator>Hale, Jack K.</creator><creator>Stokes, Arnold P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196201</creationdate><title>Some Physical Solutions of Dirac‐Type Equations</title><author>Hale, Jack K. ; Stokes, Arnold P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1962</creationdate><topic>DIFFERENTIAL EQUATIONS</topic><topic>DIRAC EQUATIONS</topic><topic>ELECTRODYNAMICS</topic><topic>MATHEMATICS</topic><topic>MATHEMATICS AND COMPUTERS</topic><topic>QUANTUM MECHANICS</topic><topic>RELATIVITY THEORY</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, Jack K.</creatorcontrib><creatorcontrib>Stokes, Arnold P.</creatorcontrib><creatorcontrib>RIAS, Baltimore</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, Jack K.</au><au>Stokes, Arnold P.</au><aucorp>RIAS, Baltimore</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Physical Solutions of Dirac‐Type Equations</atitle><jtitle>J. Math. Phys</jtitle><date>1962-01</date><risdate>1962</risdate><volume>3</volume><issue>1</issue><spage>70</spage><epage>74</epage><pages>70-74</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</abstract><doi>10.1063/1.1703789</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys, 1962-01, Vol.3 (1), p.70-74 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1703789 |
source | AIP Digital Archive |
subjects | DIFFERENTIAL EQUATIONS DIRAC EQUATIONS ELECTRODYNAMICS MATHEMATICS MATHEMATICS AND COMPUTERS QUANTUM MECHANICS RELATIVITY THEORY VELOCITY |
title | Some Physical Solutions of Dirac‐Type Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Physical%20Solutions%20of%20Dirac%E2%80%90Type%20Equations&rft.jtitle=J.%20Math.%20Phys&rft.au=Hale,%20Jack%20K.&rft.aucorp=RIAS,%20Baltimore&rft.date=1962-01&rft.volume=3&rft.issue=1&rft.spage=70&rft.epage=74&rft.pages=70-74&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1703789&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |