Some Physical Solutions of Dirac‐Type Equations

The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys 1962-01, Vol.3 (1), p.70-74
Hauptverfasser: Hale, Jack K., Stokes, Arnold P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 70
container_title J. Math. Phys
container_volume 3
creator Hale, Jack K.
Stokes, Arnold P.
description The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.
doi_str_mv 10.1063/1.1703789
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1703789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcY3ClMvTfJNMlSav2BgkLrOqR3EjrSNnUyFbrzEXxGn8T-oQvB1V3cjwPnMHaO0EHoimvsoAKhtDlgLQRtctUt9CFrAXCec6n1MTtJ6RUAUUvZYjiMM589T1apIjfNhnG6bKo4T1kM2W1VO_r6-BytFj7rvy3d9nPKjoKbJn-2v232ctcf9R7ywdP9Y-9mkJPgssnJedISfBByDKJ0xivnFJLH8ViARs8915xrMJwEBEXKyBJkoQLHENCINrvY5cbUVDZR1XiaUJzPPTVWKgOF5mt0uUNUx5RqH-yirmauXlkEuxnEot0PsrZXO7vJ2nb5we-x_oV2UYb_8N_kb7fXblk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Physical Solutions of Dirac‐Type Equations</title><source>AIP Digital Archive</source><creator>Hale, Jack K. ; Stokes, Arnold P.</creator><creatorcontrib>Hale, Jack K. ; Stokes, Arnold P. ; RIAS, Baltimore</creatorcontrib><description>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1703789</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>DIFFERENTIAL EQUATIONS ; DIRAC EQUATIONS ; ELECTRODYNAMICS ; MATHEMATICS ; MATHEMATICS AND COMPUTERS ; QUANTUM MECHANICS ; RELATIVITY THEORY ; VELOCITY</subject><ispartof>J. Math. Phys, 1962-01, Vol.3 (1), p.70-74</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</citedby><cites>FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1703789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4790582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hale, Jack K.</creatorcontrib><creatorcontrib>Stokes, Arnold P.</creatorcontrib><creatorcontrib>RIAS, Baltimore</creatorcontrib><title>Some Physical Solutions of Dirac‐Type Equations</title><title>J. Math. Phys</title><description>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</description><subject>DIFFERENTIAL EQUATIONS</subject><subject>DIRAC EQUATIONS</subject><subject>ELECTRODYNAMICS</subject><subject>MATHEMATICS</subject><subject>MATHEMATICS AND COMPUTERS</subject><subject>QUANTUM MECHANICS</subject><subject>RELATIVITY THEORY</subject><subject>VELOCITY</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1962</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcY3ClMvTfJNMlSav2BgkLrOqR3EjrSNnUyFbrzEXxGn8T-oQvB1V3cjwPnMHaO0EHoimvsoAKhtDlgLQRtctUt9CFrAXCec6n1MTtJ6RUAUUvZYjiMM589T1apIjfNhnG6bKo4T1kM2W1VO_r6-BytFj7rvy3d9nPKjoKbJn-2v232ctcf9R7ywdP9Y-9mkJPgssnJedISfBByDKJ0xivnFJLH8ViARs8915xrMJwEBEXKyBJkoQLHENCINrvY5cbUVDZR1XiaUJzPPTVWKgOF5mt0uUNUx5RqH-yirmauXlkEuxnEot0PsrZXO7vJ2nb5we-x_oV2UYb_8N_kb7fXblk</recordid><startdate>196201</startdate><enddate>196201</enddate><creator>Hale, Jack K.</creator><creator>Stokes, Arnold P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>196201</creationdate><title>Some Physical Solutions of Dirac‐Type Equations</title><author>Hale, Jack K. ; Stokes, Arnold P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-caec840ef34b03da9e7aa71ce1bb3081e2e28228092c30f7c794d0457f21ff193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1962</creationdate><topic>DIFFERENTIAL EQUATIONS</topic><topic>DIRAC EQUATIONS</topic><topic>ELECTRODYNAMICS</topic><topic>MATHEMATICS</topic><topic>MATHEMATICS AND COMPUTERS</topic><topic>QUANTUM MECHANICS</topic><topic>RELATIVITY THEORY</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hale, Jack K.</creatorcontrib><creatorcontrib>Stokes, Arnold P.</creatorcontrib><creatorcontrib>RIAS, Baltimore</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, Jack K.</au><au>Stokes, Arnold P.</au><aucorp>RIAS, Baltimore</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Physical Solutions of Dirac‐Type Equations</atitle><jtitle>J. Math. Phys</jtitle><date>1962-01</date><risdate>1962</risdate><volume>3</volume><issue>1</issue><spage>70</spage><epage>74</epage><pages>70-74</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The Dirac equation of classical electrodynamics is a third‐order differential equation. The purpose of the present paper is to give some sufficient conditions on the force field which will insure that there are solutions of Dirac's equation which approach a motion with constant velocity as time increases.</abstract><doi>10.1063/1.1703789</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys, 1962-01, Vol.3 (1), p.70-74
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1703789
source AIP Digital Archive
subjects DIFFERENTIAL EQUATIONS
DIRAC EQUATIONS
ELECTRODYNAMICS
MATHEMATICS
MATHEMATICS AND COMPUTERS
QUANTUM MECHANICS
RELATIVITY THEORY
VELOCITY
title Some Physical Solutions of Dirac‐Type Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Physical%20Solutions%20of%20Dirac%E2%80%90Type%20Equations&rft.jtitle=J.%20Math.%20Phys&rft.au=Hale,%20Jack%20K.&rft.aucorp=RIAS,%20Baltimore&rft.date=1962-01&rft.volume=3&rft.issue=1&rft.spage=70&rft.epage=74&rft.pages=70-74&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1703789&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true