Practical Investigation of Convective Difference Approximations of Reduced Dispersion

A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Physics of fluids (1958) 1969-12, Vol.12 (12), p.II-3-II-12
1. Verfasser: Fromm, J. E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page II-12
container_issue 12
container_start_page II-3
container_title The Physics of fluids (1958)
container_volume 12
creator Fromm, J. E.
description A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.
doi_str_mv 10.1063/1.1692465
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1692465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1692465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMoWFcP_oNeFbrmTdK0OS71a2FBEfdc0rdvpLK2JamL_nuzH2dPAzMPwzCMXQOfA9fyDuagjVA6P2GJAC0zZUx5yhLOJWQGCjhnFyF8ci4UKJmw9au3OHVoN-my31KYug87dUOfDi6thujEcEvpfecceeqR0sU4-uGn-9pjYce9UfuN1EYojORDtC_ZmbObQFdHnbH148N79ZytXp6W1WKVIRTFlCnV5GhUIwphnDKtccIIlIhgZeucBVG2oIWWMTZIhKVrc2UN5Y0stUI5YzeHXvRDCJ5cPfq4zP_WwOvdHzXUxz8ie3tgA3bTfvw_8B84h2FM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><source>Alma/SFX Local Collection</source><creator>Fromm, J. E.</creator><creatorcontrib>Fromm, J. E.</creatorcontrib><description>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1692465</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1969-12, Vol.12 (12), p.II-3-II-12</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</citedby><cites>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fromm, J. E.</creatorcontrib><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><title>The Physics of fluids (1958)</title><description>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMoWFcP_oNeFbrmTdK0OS71a2FBEfdc0rdvpLK2JamL_nuzH2dPAzMPwzCMXQOfA9fyDuagjVA6P2GJAC0zZUx5yhLOJWQGCjhnFyF8ci4UKJmw9au3OHVoN-my31KYug87dUOfDi6thujEcEvpfecceeqR0sU4-uGn-9pjYce9UfuN1EYojORDtC_ZmbObQFdHnbH148N79ZytXp6W1WKVIRTFlCnV5GhUIwphnDKtccIIlIhgZeucBVG2oIWWMTZIhKVrc2UN5Y0stUI5YzeHXvRDCJ5cPfq4zP_WwOvdHzXUxz8ie3tgA3bTfvw_8B84h2FM</recordid><startdate>196912</startdate><enddate>196912</enddate><creator>Fromm, J. E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196912</creationdate><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><author>Fromm, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromm, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromm, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1969-12</date><risdate>1969</risdate><volume>12</volume><issue>12</issue><spage>II-3</spage><epage>II-12</epage><pages>II-3-II-12</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</abstract><doi>10.1063/1.1692465</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1969-12, Vol.12 (12), p.II-3-II-12
issn 0031-9171
2163-4998
language eng
recordid cdi_scitation_primary_10_1063_1_1692465
source Alma/SFX Local Collection
title Practical Investigation of Convective Difference Approximations of Reduced Dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Investigation%20of%20Convective%20Difference%20Approximations%20of%20Reduced%20Dispersion&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Fromm,%20J.%20E.&rft.date=1969-12&rft.volume=12&rft.issue=12&rft.spage=II-3&rft.epage=II-12&rft.pages=II-3-II-12&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1692465&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1692465%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true