Practical Investigation of Convective Difference Approximations of Reduced Dispersion
A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For sec...
Gespeichert in:
Veröffentlicht in: | The Physics of fluids (1958) 1969-12, Vol.12 (12), p.II-3-II-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | II-12 |
---|---|
container_issue | 12 |
container_start_page | II-3 |
container_title | The Physics of fluids (1958) |
container_volume | 12 |
creator | Fromm, J. E. |
description | A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included. |
doi_str_mv | 10.1063/1.1692465 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1692465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1692465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMoWFcP_oNeFbrmTdK0OS71a2FBEfdc0rdvpLK2JamL_nuzH2dPAzMPwzCMXQOfA9fyDuagjVA6P2GJAC0zZUx5yhLOJWQGCjhnFyF8ci4UKJmw9au3OHVoN-my31KYug87dUOfDi6thujEcEvpfecceeqR0sU4-uGn-9pjYce9UfuN1EYojORDtC_ZmbObQFdHnbH148N79ZytXp6W1WKVIRTFlCnV5GhUIwphnDKtccIIlIhgZeucBVG2oIWWMTZIhKVrc2UN5Y0stUI5YzeHXvRDCJ5cPfq4zP_WwOvdHzXUxz8ie3tgA3bTfvw_8B84h2FM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><source>Alma/SFX Local Collection</source><creator>Fromm, J. E.</creator><creatorcontrib>Fromm, J. E.</creatorcontrib><description>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.1692465</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1969-12, Vol.12 (12), p.II-3-II-12</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</citedby><cites>FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fromm, J. E.</creatorcontrib><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><title>The Physics of fluids (1958)</title><description>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAYhIMoWFcP_oNeFbrmTdK0OS71a2FBEfdc0rdvpLK2JamL_nuzH2dPAzMPwzCMXQOfA9fyDuagjVA6P2GJAC0zZUx5yhLOJWQGCjhnFyF8ci4UKJmw9au3OHVoN-my31KYug87dUOfDi6thujEcEvpfecceeqR0sU4-uGn-9pjYce9UfuN1EYojORDtC_ZmbObQFdHnbH148N79ZytXp6W1WKVIRTFlCnV5GhUIwphnDKtccIIlIhgZeucBVG2oIWWMTZIhKVrc2UN5Y0stUI5YzeHXvRDCJ5cPfq4zP_WwOvdHzXUxz8ie3tgA3bTfvw_8B84h2FM</recordid><startdate>196912</startdate><enddate>196912</enddate><creator>Fromm, J. E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196912</creationdate><title>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</title><author>Fromm, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-44b5c94b2729f49d9f292c3cc1a3dffa128d1626329f9ceec8fd54a9e5b3864c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromm, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromm, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Investigation of Convective Difference Approximations of Reduced Dispersion</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1969-12</date><risdate>1969</risdate><volume>12</volume><issue>12</issue><spage>II-3</spage><epage>II-12</epage><pages>II-3-II-12</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A survey of commonly used approximations to the Eulerian form of the equations of ideal fluid flow is given. Comparisons are made through amplitude and phase properties as determined by linear stability analysis. The unacceptable amplitude damping of first‐order approximations is reiterated. For second‐order approximations the discussion emphasizes numerical dispersion effects and shows that the familiar stable forms do not differ significantly in relative merit. Fourth‐order improvements are discussed with reference to further extensions which minimize dispersion. Conservative forms of the approximations are given along with experimentally determined properties regarding their nonlinear behavior in fluid‐dynamic calculations. Comments relating to fluid‐dynamic instability versus numerical instability are included.</abstract><doi>10.1063/1.1692465</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | The Physics of fluids (1958), 1969-12, Vol.12 (12), p.II-3-II-12 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1692465 |
source | Alma/SFX Local Collection |
title | Practical Investigation of Convective Difference Approximations of Reduced Dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Investigation%20of%20Convective%20Difference%20Approximations%20of%20Reduced%20Dispersion&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Fromm,%20J.%20E.&rft.date=1969-12&rft.volume=12&rft.issue=12&rft.spage=II-3&rft.epage=II-12&rft.pages=II-3-II-12&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.1692465&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1692465%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |