Quantum Theory of the Generalized Wave Equations. I

We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970) 1970-06, Vol.11 (6), p.1901-1912
1. Verfasser: Tripathy, Kishor C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1912
container_issue 6
container_start_page 1901
container_title J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)
container_volume 11
creator Tripathy, Kishor C.
description We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.
doi_str_mv 10.1063/1.1665342
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1665342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzc1jJllKqbVQEKHiMqR50JF2UpO0UH-9rS24d3U3H4dzD0K3QAZAavYIA6hrwTg9Qz0gUlVNLeQ56hFCaUW5lJfoKudPQgAk5z3E3jamK5sVni18TDscAy4Lj8e-88ks22_v8IfZejz62pjSxi4P8OQaXQSzzP7mdPvo_Xk0G75U09fxZPg0rSzlUCofFGfMOauCJfXcWetAUBAihNp5QQ2TjZhbQTxjylvJrFWNUgrkvptrBOuju2NuzKXV2bbF24WNXedt0RwYgwb26P6IbIo5Jx_0OrUrk3YaiD5MokGfJtnbh6M9ZP2-8z-8jekP6rUL7Afo8m2a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Theory of the Generalized Wave Equations. I</title><source>AIP Digital Archive</source><creator>Tripathy, Kishor C.</creator><creatorcontrib>Tripathy, Kishor C. ; Syracuse Univ., N. Y</creatorcontrib><description>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1665342</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>ELEMENTARY PARTICLES ; ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for ; FIELD THEORY ; MASS ; N34210 -Physics (High Energy)-Particle Interactions &amp; Properties (Theoretical)-General ; N34420 -Physics (Theoretical)-Quantum Field Theories ; QUANTUM FIELD THEORY ; QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for ; QUANTUM MECHANICS ; SPECTRA ; TACHYONS ; TACHYONS/mass spectra of, quantum theory of generalized wave equations for</subject><ispartof>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970), 1970-06, Vol.11 (6), p.1901-1912</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</citedby><cites>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1665342$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4133171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tripathy, Kishor C.</creatorcontrib><creatorcontrib>Syracuse Univ., N. Y</creatorcontrib><title>Quantum Theory of the Generalized Wave Equations. I</title><title>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</title><description>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</description><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for</subject><subject>FIELD THEORY</subject><subject>MASS</subject><subject>N34210 -Physics (High Energy)-Particle Interactions &amp; Properties (Theoretical)-General</subject><subject>N34420 -Physics (Theoretical)-Quantum Field Theories</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for</subject><subject>QUANTUM MECHANICS</subject><subject>SPECTRA</subject><subject>TACHYONS</subject><subject>TACHYONS/mass spectra of, quantum theory of generalized wave equations for</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzc1jJllKqbVQEKHiMqR50JF2UpO0UH-9rS24d3U3H4dzD0K3QAZAavYIA6hrwTg9Qz0gUlVNLeQ56hFCaUW5lJfoKudPQgAk5z3E3jamK5sVni18TDscAy4Lj8e-88ks22_v8IfZejz62pjSxi4P8OQaXQSzzP7mdPvo_Xk0G75U09fxZPg0rSzlUCofFGfMOauCJfXcWetAUBAihNp5QQ2TjZhbQTxjylvJrFWNUgrkvptrBOuju2NuzKXV2bbF24WNXedt0RwYgwb26P6IbIo5Jx_0OrUrk3YaiD5MokGfJtnbh6M9ZP2-8z-8jekP6rUL7Afo8m2a</recordid><startdate>197006</startdate><enddate>197006</enddate><creator>Tripathy, Kishor C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>197006</creationdate><title>Quantum Theory of the Generalized Wave Equations. I</title><author>Tripathy, Kishor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for</topic><topic>FIELD THEORY</topic><topic>MASS</topic><topic>N34210 -Physics (High Energy)-Particle Interactions &amp; Properties (Theoretical)-General</topic><topic>N34420 -Physics (Theoretical)-Quantum Field Theories</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for</topic><topic>QUANTUM MECHANICS</topic><topic>SPECTRA</topic><topic>TACHYONS</topic><topic>TACHYONS/mass spectra of, quantum theory of generalized wave equations for</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathy, Kishor C.</creatorcontrib><creatorcontrib>Syracuse Univ., N. Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathy, Kishor C.</au><aucorp>Syracuse Univ., N. Y</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Theory of the Generalized Wave Equations. I</atitle><jtitle>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</jtitle><date>1970-06</date><risdate>1970</risdate><volume>11</volume><issue>6</issue><spage>1901</spage><epage>1912</epage><pages>1901-1912</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</abstract><doi>10.1063/1.1665342</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970), 1970-06, Vol.11 (6), p.1901-1912
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1665342
source AIP Digital Archive
subjects ELEMENTARY PARTICLES
ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for
FIELD THEORY
MASS
N34210 -Physics (High Energy)-Particle Interactions & Properties (Theoretical)-General
N34420 -Physics (Theoretical)-Quantum Field Theories
QUANTUM FIELD THEORY
QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for
QUANTUM MECHANICS
SPECTRA
TACHYONS
TACHYONS/mass spectra of, quantum theory of generalized wave equations for
title Quantum Theory of the Generalized Wave Equations. I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Theory%20of%20the%20Generalized%20Wave%20Equations.%20I&rft.jtitle=J.%20Math.%20Phys.%20(N.%20Y.)%2011:%201901-12(Jun%201970)&rft.au=Tripathy,%20Kishor%20C.&rft.aucorp=Syracuse%20Univ.,%20N.%20Y&rft.date=1970-06&rft.volume=11&rft.issue=6&rft.spage=1901&rft.epage=1912&rft.pages=1901-1912&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1665342&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true