Quantum Theory of the Generalized Wave Equations. I
We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of SL(2, C)( Majorana )⊗ Dirac . A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly cal...
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970) 1970-06, Vol.11 (6), p.1901-1912 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1912 |
---|---|
container_issue | 6 |
container_start_page | 1901 |
container_title | J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970) |
container_volume | 11 |
creator | Tripathy, Kishor C. |
description | We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of
SL(2, C)(
Majorana
)⊗
Dirac
. A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented. |
doi_str_mv | 10.1063/1.1665342 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1665342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzc1jJllKqbVQEKHiMqR50JF2UpO0UH-9rS24d3U3H4dzD0K3QAZAavYIA6hrwTg9Qz0gUlVNLeQ56hFCaUW5lJfoKudPQgAk5z3E3jamK5sVni18TDscAy4Lj8e-88ks22_v8IfZejz62pjSxi4P8OQaXQSzzP7mdPvo_Xk0G75U09fxZPg0rSzlUCofFGfMOauCJfXcWetAUBAihNp5QQ2TjZhbQTxjylvJrFWNUgrkvptrBOuju2NuzKXV2bbF24WNXedt0RwYgwb26P6IbIo5Jx_0OrUrk3YaiD5MokGfJtnbh6M9ZP2-8z-8jekP6rUL7Afo8m2a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Theory of the Generalized Wave Equations. I</title><source>AIP Digital Archive</source><creator>Tripathy, Kishor C.</creator><creatorcontrib>Tripathy, Kishor C. ; Syracuse Univ., N. Y</creatorcontrib><description>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of
SL(2, C)(
Majorana
)⊗
Dirac
. A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1665342</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><subject>ELEMENTARY PARTICLES ; ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for ; FIELD THEORY ; MASS ; N34210 -Physics (High Energy)-Particle Interactions & Properties (Theoretical)-General ; N34420 -Physics (Theoretical)-Quantum Field Theories ; QUANTUM FIELD THEORY ; QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for ; QUANTUM MECHANICS ; SPECTRA ; TACHYONS ; TACHYONS/mass spectra of, quantum theory of generalized wave equations for</subject><ispartof>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970), 1970-06, Vol.11 (6), p.1901-1912</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</citedby><cites>FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1665342$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4133171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tripathy, Kishor C.</creatorcontrib><creatorcontrib>Syracuse Univ., N. Y</creatorcontrib><title>Quantum Theory of the Generalized Wave Equations. I</title><title>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</title><description>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of
SL(2, C)(
Majorana
)⊗
Dirac
. A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</description><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for</subject><subject>FIELD THEORY</subject><subject>MASS</subject><subject>N34210 -Physics (High Energy)-Particle Interactions & Properties (Theoretical)-General</subject><subject>N34420 -Physics (Theoretical)-Quantum Field Theories</subject><subject>QUANTUM FIELD THEORY</subject><subject>QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for</subject><subject>QUANTUM MECHANICS</subject><subject>SPECTRA</subject><subject>TACHYONS</subject><subject>TACHYONS/mass spectra of, quantum theory of generalized wave equations for</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzc1jJllKqbVQEKHiMqR50JF2UpO0UH-9rS24d3U3H4dzD0K3QAZAavYIA6hrwTg9Qz0gUlVNLeQ56hFCaUW5lJfoKudPQgAk5z3E3jamK5sVni18TDscAy4Lj8e-88ks22_v8IfZejz62pjSxi4P8OQaXQSzzP7mdPvo_Xk0G75U09fxZPg0rSzlUCofFGfMOauCJfXcWetAUBAihNp5QQ2TjZhbQTxjylvJrFWNUgrkvptrBOuju2NuzKXV2bbF24WNXedt0RwYgwb26P6IbIo5Jx_0OrUrk3YaiD5MokGfJtnbh6M9ZP2-8z-8jekP6rUL7Afo8m2a</recordid><startdate>197006</startdate><enddate>197006</enddate><creator>Tripathy, Kishor C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>197006</creationdate><title>Quantum Theory of the Generalized Wave Equations. I</title><author>Tripathy, Kishor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ef9433ddc9fc06bdccd152155ff6de52a3875bc50e339ec83cc9799918118d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for</topic><topic>FIELD THEORY</topic><topic>MASS</topic><topic>N34210 -Physics (High Energy)-Particle Interactions & Properties (Theoretical)-General</topic><topic>N34420 -Physics (Theoretical)-Quantum Field Theories</topic><topic>QUANTUM FIELD THEORY</topic><topic>QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for</topic><topic>QUANTUM MECHANICS</topic><topic>SPECTRA</topic><topic>TACHYONS</topic><topic>TACHYONS/mass spectra of, quantum theory of generalized wave equations for</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathy, Kishor C.</creatorcontrib><creatorcontrib>Syracuse Univ., N. Y</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathy, Kishor C.</au><aucorp>Syracuse Univ., N. Y</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Theory of the Generalized Wave Equations. I</atitle><jtitle>J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970)</jtitle><date>1970-06</date><risdate>1970</risdate><volume>11</volume><issue>6</issue><spage>1901</spage><epage>1912</epage><pages>1901-1912</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We have made a systematic analysis of the quantum theory of the infinite‐component fields that transform under the combined representations of
SL(2, C)(
Majorana
)⊗
Dirac
. A complete set of solutions of the wave equation includes solutions with timelike and spacelike momenta. We have explicitly calculated the mass spectra for the timelike and spacelike cases. Our method makes use of the decomposition of the product representation into reducible representations of the ``little'' groups SU(2) and SU(1, 1). Finally, the quantization of the generalized fields is presented.</abstract><doi>10.1063/1.1665342</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys. (N. Y.) 11: 1901-12(Jun 1970), 1970-06, Vol.11 (6), p.1901-1912 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1665342 |
source | AIP Digital Archive |
subjects | ELEMENTARY PARTICLES ELEMENTARY PARTICLES/mass spectra of, quantum theory of generalized wave equations for FIELD THEORY MASS N34210 -Physics (High Energy)-Particle Interactions & Properties (Theoretical)-General N34420 -Physics (Theoretical)-Quantum Field Theories QUANTUM FIELD THEORY QUANTUM FIELD THEORY/quantization of generalized fields in, wave equations for QUANTUM MECHANICS SPECTRA TACHYONS TACHYONS/mass spectra of, quantum theory of generalized wave equations for |
title | Quantum Theory of the Generalized Wave Equations. I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Theory%20of%20the%20Generalized%20Wave%20Equations.%20I&rft.jtitle=J.%20Math.%20Phys.%20(N.%20Y.)%2011:%201901-12(Jun%201970)&rft.au=Tripathy,%20Kishor%20C.&rft.aucorp=Syracuse%20Univ.,%20N.%20Y&rft.date=1970-06&rft.volume=11&rft.issue=6&rft.spage=1901&rft.epage=1912&rft.pages=1901-1912&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1665342&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |