Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators
A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are deriv...
Gespeichert in:
Veröffentlicht in: | J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968) 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1986 |
---|---|
container_issue | 11 |
container_start_page | 1976 |
container_title | J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968) |
container_volume | 9 |
creator | Lewis, H. R. |
description | A class of exact invariants for oscillator systems whose Hamiltonians are
H=(1/2ε)[p
2
+Ω
2
(t)q
2
]
is given in closed form in terms of a function ρ(t) which satisfies
ε
2
d
2
ρ/dt
2
+Ω
2
(t)ρ−ρ
−3
=0
.
Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed. |
doi_str_mv | 10.1063/1.1664532 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1664532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</originalsourceid><addsrcrecordid>eNqd0MtKAzEYBeAgCtbqwjcI7hSm5jaZzFJqtYVCEerCVUhzwZGZpCRp0Z2P4DP6JE5twb2rf3E-zg8HgEuMRhhxeotHmHNWUnIEBhiJuqh4KY7BACFCCsKEOAVnKb0hhLFgbABexq1KCQYHJ-9KZzjzWxUb5XOCLkT4mzZatVB5A582fbDp4LLp7Pfn171dW2-sz3CqYhd8o-Ei6aZtVQ4xnYMTp9pkLw53CJ4fJsvxtJgvHmfju3mhKeG5sMasGHHYlJgxVCvuaGVcrUTlONdCqJrila2QE4oqUgpaW4NMyStGysrQig7B1b43pNzI_n-2-lUH763OkglC65L06HqPdAwpRevkOjadih8SI7kbTmJ5GK63N3u761K5Cf5_eBviH5Rr4-gPvJx8zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><source>AIP Digital Archive</source><creator>Lewis, H. R.</creator><creatorcontrib>Lewis, H. R. ; Los Alamos Scientific Lab., N. Mex</creatorcontrib><description>A class of exact invariants for oscillator systems whose Hamiltonians are
H=(1/2ε)[p
2
+Ω
2
(t)q
2
]
is given in closed form in terms of a function ρ(t) which satisfies
ε
2
d
2
ρ/dt
2
+Ω
2
(t)ρ−ρ
−3
=0
.
Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1664532</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of ; CANONICAL TRANSFORMATION ; HAMILTONIAN FUNCTION ; MATHEMATICS ; MOMENTUM ; MOTION ; N34640 -Particle Accelerators-Ion Optics & Field Calculations ; OSCILLATIONS ; OSCILLATORS ; PLASMA ; PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic ; QUANTUM MECHANICS ; SYNCHROTRONS ; TIME</subject><ispartof>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</citedby><cites>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1664532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,883,1556,27911,27912,76147</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4823952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, H. R.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., N. Mex</creatorcontrib><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><title>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</title><description>A class of exact invariants for oscillator systems whose Hamiltonians are
H=(1/2ε)[p
2
+Ω
2
(t)q
2
]
is given in closed form in terms of a function ρ(t) which satisfies
ε
2
d
2
ρ/dt
2
+Ω
2
(t)ρ−ρ
−3
=0
.
Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</description><subject>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of</subject><subject>CANONICAL TRANSFORMATION</subject><subject>HAMILTONIAN FUNCTION</subject><subject>MATHEMATICS</subject><subject>MOMENTUM</subject><subject>MOTION</subject><subject>N34640 -Particle Accelerators-Ion Optics & Field Calculations</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>PLASMA</subject><subject>PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic</subject><subject>QUANTUM MECHANICS</subject><subject>SYNCHROTRONS</subject><subject>TIME</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEYBeAgCtbqwjcI7hSm5jaZzFJqtYVCEerCVUhzwZGZpCRp0Z2P4DP6JE5twb2rf3E-zg8HgEuMRhhxeotHmHNWUnIEBhiJuqh4KY7BACFCCsKEOAVnKb0hhLFgbABexq1KCQYHJ-9KZzjzWxUb5XOCLkT4mzZatVB5A582fbDp4LLp7Pfn171dW2-sz3CqYhd8o-Ei6aZtVQ4xnYMTp9pkLw53CJ4fJsvxtJgvHmfju3mhKeG5sMasGHHYlJgxVCvuaGVcrUTlONdCqJrila2QE4oqUgpaW4NMyStGysrQig7B1b43pNzI_n-2-lUH763OkglC65L06HqPdAwpRevkOjadih8SI7kbTmJ5GK63N3u761K5Cf5_eBviH5Rr4-gPvJx8zw</recordid><startdate>19680101</startdate><enddate>19680101</enddate><creator>Lewis, H. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19680101</creationdate><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><author>Lewis, H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><topic>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of</topic><topic>CANONICAL TRANSFORMATION</topic><topic>HAMILTONIAN FUNCTION</topic><topic>MATHEMATICS</topic><topic>MOMENTUM</topic><topic>MOTION</topic><topic>N34640 -Particle Accelerators-Ion Optics & Field Calculations</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>PLASMA</topic><topic>PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic</topic><topic>QUANTUM MECHANICS</topic><topic>SYNCHROTRONS</topic><topic>TIME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, H. R.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., N. Mex</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, H. R.</au><aucorp>Los Alamos Scientific Lab., N. Mex</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</atitle><jtitle>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</jtitle><date>1968-01-01</date><risdate>1968</risdate><volume>9</volume><issue>11</issue><spage>1976</spage><epage>1986</epage><pages>1976-1986</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A class of exact invariants for oscillator systems whose Hamiltonians are
H=(1/2ε)[p
2
+Ω
2
(t)q
2
]
is given in closed form in terms of a function ρ(t) which satisfies
ε
2
d
2
ρ/dt
2
+Ω
2
(t)ρ−ρ
−3
=0
.
Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</abstract><cop>United States</cop><doi>10.1063/1.1664532</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1664532 |
source | AIP Digital Archive |
subjects | BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of CANONICAL TRANSFORMATION HAMILTONIAN FUNCTION MATHEMATICS MOMENTUM MOTION N34640 -Particle Accelerators-Ion Optics & Field Calculations OSCILLATIONS OSCILLATORS PLASMA PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic QUANTUM MECHANICS SYNCHROTRONS TIME |
title | Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20of%20Exact%20Invariants%20for%20Classical%20and%20Quantum%20Time%E2%80%90Dependent%20Harmonic%20Oscillators&rft.jtitle=J.%20Math%20Phys.(N.Y),%209:%201976-86(Nov.%201968)&rft.au=Lewis,%20H.%20R.&rft.aucorp=Los%20Alamos%20Scientific%20Lab.,%20N.%20Mex&rft.date=1968-01-01&rft.volume=9&rft.issue=11&rft.spage=1976&rft.epage=1986&rft.pages=1976-1986&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1664532&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |