Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators

A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968) 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986
1. Verfasser: Lewis, H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1986
container_issue 11
container_start_page 1976
container_title J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)
container_volume 9
creator Lewis, H. R.
description A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.
doi_str_mv 10.1063/1.1664532
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1664532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</originalsourceid><addsrcrecordid>eNqd0MtKAzEYBeAgCtbqwjcI7hSm5jaZzFJqtYVCEerCVUhzwZGZpCRp0Z2P4DP6JE5twb2rf3E-zg8HgEuMRhhxeotHmHNWUnIEBhiJuqh4KY7BACFCCsKEOAVnKb0hhLFgbABexq1KCQYHJ-9KZzjzWxUb5XOCLkT4mzZatVB5A582fbDp4LLp7Pfn171dW2-sz3CqYhd8o-Ei6aZtVQ4xnYMTp9pkLw53CJ4fJsvxtJgvHmfju3mhKeG5sMasGHHYlJgxVCvuaGVcrUTlONdCqJrila2QE4oqUgpaW4NMyStGysrQig7B1b43pNzI_n-2-lUH763OkglC65L06HqPdAwpRevkOjadih8SI7kbTmJ5GK63N3u761K5Cf5_eBviH5Rr4-gPvJx8zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><source>AIP Digital Archive</source><creator>Lewis, H. R.</creator><creatorcontrib>Lewis, H. R. ; Los Alamos Scientific Lab., N. Mex</creatorcontrib><description>A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1664532</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of ; CANONICAL TRANSFORMATION ; HAMILTONIAN FUNCTION ; MATHEMATICS ; MOMENTUM ; MOTION ; N34640 -Particle Accelerators-Ion Optics &amp; Field Calculations ; OSCILLATIONS ; OSCILLATORS ; PLASMA ; PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic ; QUANTUM MECHANICS ; SYNCHROTRONS ; TIME</subject><ispartof>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</citedby><cites>FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1664532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,883,1556,27911,27912,76147</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4823952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, H. R.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., N. Mex</creatorcontrib><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><title>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</title><description>A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</description><subject>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of</subject><subject>CANONICAL TRANSFORMATION</subject><subject>HAMILTONIAN FUNCTION</subject><subject>MATHEMATICS</subject><subject>MOMENTUM</subject><subject>MOTION</subject><subject>N34640 -Particle Accelerators-Ion Optics &amp; Field Calculations</subject><subject>OSCILLATIONS</subject><subject>OSCILLATORS</subject><subject>PLASMA</subject><subject>PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic</subject><subject>QUANTUM MECHANICS</subject><subject>SYNCHROTRONS</subject><subject>TIME</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEYBeAgCtbqwjcI7hSm5jaZzFJqtYVCEerCVUhzwZGZpCRp0Z2P4DP6JE5twb2rf3E-zg8HgEuMRhhxeotHmHNWUnIEBhiJuqh4KY7BACFCCsKEOAVnKb0hhLFgbABexq1KCQYHJ-9KZzjzWxUb5XOCLkT4mzZatVB5A582fbDp4LLp7Pfn171dW2-sz3CqYhd8o-Ei6aZtVQ4xnYMTp9pkLw53CJ4fJsvxtJgvHmfju3mhKeG5sMasGHHYlJgxVCvuaGVcrUTlONdCqJrila2QE4oqUgpaW4NMyStGysrQig7B1b43pNzI_n-2-lUH763OkglC65L06HqPdAwpRevkOjadih8SI7kbTmJ5GK63N3u761K5Cf5_eBviH5Rr4-gPvJx8zw</recordid><startdate>19680101</startdate><enddate>19680101</enddate><creator>Lewis, H. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19680101</creationdate><title>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</title><author>Lewis, H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-eddb42f1d514409a6f37df9a87f66c88a931be70f8a3a25839ed0d5674257d373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><topic>BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of</topic><topic>CANONICAL TRANSFORMATION</topic><topic>HAMILTONIAN FUNCTION</topic><topic>MATHEMATICS</topic><topic>MOMENTUM</topic><topic>MOTION</topic><topic>N34640 -Particle Accelerators-Ion Optics &amp; Field Calculations</topic><topic>OSCILLATIONS</topic><topic>OSCILLATORS</topic><topic>PLASMA</topic><topic>PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic</topic><topic>QUANTUM MECHANICS</topic><topic>SYNCHROTRONS</topic><topic>TIME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, H. R.</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., N. Mex</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, H. R.</au><aucorp>Los Alamos Scientific Lab., N. Mex</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators</atitle><jtitle>J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968)</jtitle><date>1968-01-01</date><risdate>1968</risdate><volume>9</volume><issue>11</issue><spage>1976</spage><epage>1986</epage><pages>1976-1986</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A class of exact invariants for oscillator systems whose Hamiltonians are H=(1/2ε)[p 2 +Ω 2 (t)q 2 ] is given in closed form in terms of a function ρ(t) which satisfies ε 2 d 2 ρ/dt 2 +Ω 2 (t)ρ−ρ −3 =0 . Each particular solution of the equation for ρ determines an invariant. The invariants are derived by applying an asymptotic theory due to Kruskal to the oscillator system in closed form. As a consequence, the results are more general than the asymptotic treatment, and are even applicable with complex Ω(t) and quantum systems. A generating function is given for a classical canonical transformation to a class of new canonical variables which are so chosen that the new momentum is any particular member of the class of invariants. The new coordinate is, of course, a cyclic variable. The meaning of the invariants is discussed, and the general solution for ρ(t) is given in terms of linearly independent solutions of the equations of motion for the classical oscillator. The general solution for ρ(t) is evaluated for some special cases. Finally, some aspects of the application of the invariants to quantum systems are discussed.</abstract><cop>United States</cop><doi>10.1063/1.1664532</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math Phys.(N.Y), 9: 1976-86(Nov. 1968), 1968-01, Vol.9 (11), p.1976-1986
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_1664532
source AIP Digital Archive
subjects BROOKHAVEN ALTERNATING-GRADIENT SYNCHROTRON (AGS)/beam oscillations in, class of exact invariants for classical and quantum time- dependent harmonic oscillators for analysis of
CANONICAL TRANSFORMATION
HAMILTONIAN FUNCTION
MATHEMATICS
MOMENTUM
MOTION
N34640 -Particle Accelerators-Ion Optics & Field Calculations
OSCILLATIONS
OSCILLATORS
PLASMA
PLASMA/oscillations in, class of exact invariants for classical and quantum time-dependent harmonic
QUANTUM MECHANICS
SYNCHROTRONS
TIME
title Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20of%20Exact%20Invariants%20for%20Classical%20and%20Quantum%20Time%E2%80%90Dependent%20Harmonic%20Oscillators&rft.jtitle=J.%20Math%20Phys.(N.Y),%209:%201976-86(Nov.%201968)&rft.au=Lewis,%20H.%20R.&rft.aucorp=Los%20Alamos%20Scientific%20Lab.,%20N.%20Mex&rft.date=1968-01-01&rft.volume=9&rft.issue=11&rft.spage=1976&rft.epage=1986&rft.pages=1976-1986&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1664532&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true