Reynolds dependence of third-order velocity structure functions
We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compe...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2004-02, Vol.16 (2), p.482-485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 2 |
container_start_page | 482 |
container_title | Physics of fluids (1994) |
container_volume | 16 |
creator | Gagne, Yves Castaing, Bernard Baudet, Christophe Malécot, Yann |
description | We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range
72⩽R
λ
⩽2260.
As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number. |
doi_str_mv | 10.1063/1.1639013 |
format | Article |
fullrecord | <record><control><sourceid>hal_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1639013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00183628v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</originalsourceid><addsrcrecordid>eNqdkFFLwzAUhYMoOKcP_oO-KnTmNu1N8yRjOCcMBNHn0N4krFKbknSD_XtXNty7T_dw-c6Bcxi7Bz4DjuIJZoBCcRAXbAK8VKlExMtRS54iCrhmNzF-c86FynDCnj_svvOtiYmxve2M7cgm3iXDpgkm9cHYkOxs66kZ9kkcwpaGbbCJ23Y0NL6Lt-zKVW20d6c7ZV_Ll8_FKl2_v74t5uuUcpENKXIqc146B0SZqk1BBeW5sq5WqARCllcoaiIqJEmpsFQkoQCXF9KBdEZM2cMxd1O1ug_NTxX22leNXs3XevxxDqXArNzBmaXgYwzW_RmA63ElDfq00oF9PLLx0LAaK_0P3vlwBnVvnPgFrUB1Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reynolds dependence of third-order velocity structure functions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</creator><creatorcontrib>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</creatorcontrib><description>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range
72⩽R
λ
⩽2260.
As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1639013</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Engineering Sciences ; Fluid mechanics ; Fluids mechanics ; Mechanics ; Physics</subject><ispartof>Physics of fluids (1994), 2004-02, Vol.16 (2), p.482-485</ispartof><rights>American Institute of Physics</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</citedby><cites>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</cites><orcidid>0000-0001-7477-1818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00183628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gagne, Yves</creatorcontrib><creatorcontrib>Castaing, Bernard</creatorcontrib><creatorcontrib>Baudet, Christophe</creatorcontrib><creatorcontrib>Malécot, Yann</creatorcontrib><title>Reynolds dependence of third-order velocity structure functions</title><title>Physics of fluids (1994)</title><description>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range
72⩽R
λ
⩽2260.
As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</description><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqdkFFLwzAUhYMoOKcP_oO-KnTmNu1N8yRjOCcMBNHn0N4krFKbknSD_XtXNty7T_dw-c6Bcxi7Bz4DjuIJZoBCcRAXbAK8VKlExMtRS54iCrhmNzF-c86FynDCnj_svvOtiYmxve2M7cgm3iXDpgkm9cHYkOxs66kZ9kkcwpaGbbCJ23Y0NL6Lt-zKVW20d6c7ZV_Ll8_FKl2_v74t5uuUcpENKXIqc146B0SZqk1BBeW5sq5WqARCllcoaiIqJEmpsFQkoQCXF9KBdEZM2cMxd1O1ug_NTxX22leNXs3XevxxDqXArNzBmaXgYwzW_RmA63ElDfq00oF9PLLx0LAaK_0P3vlwBnVvnPgFrUB1Mw</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Gagne, Yves</creator><creator>Castaing, Bernard</creator><creator>Baudet, Christophe</creator><creator>Malécot, Yann</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7477-1818</orcidid></search><sort><creationdate>20040201</creationdate><title>Reynolds dependence of third-order velocity structure functions</title><author>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagne, Yves</creatorcontrib><creatorcontrib>Castaing, Bernard</creatorcontrib><creatorcontrib>Baudet, Christophe</creatorcontrib><creatorcontrib>Malécot, Yann</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagne, Yves</au><au>Castaing, Bernard</au><au>Baudet, Christophe</au><au>Malécot, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reynolds dependence of third-order velocity structure functions</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>16</volume><issue>2</issue><spage>482</spage><epage>485</epage><pages>482-485</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range
72⩽R
λ
⩽2260.
As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1639013</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7477-1818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2004-02, Vol.16 (2), p.482-485 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1639013 |
source | AIP Journals Complete; AIP Digital Archive |
subjects | Engineering Sciences Fluid mechanics Fluids mechanics Mechanics Physics |
title | Reynolds dependence of third-order velocity structure functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reynolds%20dependence%20of%20third-order%20velocity%20structure%20functions&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Gagne,%20Yves&rft.date=2004-02-01&rft.volume=16&rft.issue=2&rft.spage=482&rft.epage=485&rft.pages=482-485&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1639013&rft_dat=%3Chal_scita%3Eoai_HAL_hal_00183628v1%3C/hal_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |