Reynolds dependence of third-order velocity structure functions

We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2004-02, Vol.16 (2), p.482-485
Hauptverfasser: Gagne, Yves, Castaing, Bernard, Baudet, Christophe, Malécot, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 2
container_start_page 482
container_title Physics of fluids (1994)
container_volume 16
creator Gagne, Yves
Castaing, Bernard
Baudet, Christophe
Malécot, Yann
description We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.
doi_str_mv 10.1063/1.1639013
format Article
fullrecord <record><control><sourceid>hal_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1639013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00183628v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</originalsourceid><addsrcrecordid>eNqdkFFLwzAUhYMoOKcP_oO-KnTmNu1N8yRjOCcMBNHn0N4krFKbknSD_XtXNty7T_dw-c6Bcxi7Bz4DjuIJZoBCcRAXbAK8VKlExMtRS54iCrhmNzF-c86FynDCnj_svvOtiYmxve2M7cgm3iXDpgkm9cHYkOxs66kZ9kkcwpaGbbCJ23Y0NL6Lt-zKVW20d6c7ZV_Ll8_FKl2_v74t5uuUcpENKXIqc146B0SZqk1BBeW5sq5WqARCllcoaiIqJEmpsFQkoQCXF9KBdEZM2cMxd1O1ug_NTxX22leNXs3XevxxDqXArNzBmaXgYwzW_RmA63ElDfq00oF9PLLx0LAaK_0P3vlwBnVvnPgFrUB1Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reynolds dependence of third-order velocity structure functions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</creator><creatorcontrib>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</creatorcontrib><description>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1639013</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Engineering Sciences ; Fluid mechanics ; Fluids mechanics ; Mechanics ; Physics</subject><ispartof>Physics of fluids (1994), 2004-02, Vol.16 (2), p.482-485</ispartof><rights>American Institute of Physics</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</citedby><cites>FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</cites><orcidid>0000-0001-7477-1818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00183628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gagne, Yves</creatorcontrib><creatorcontrib>Castaing, Bernard</creatorcontrib><creatorcontrib>Baudet, Christophe</creatorcontrib><creatorcontrib>Malécot, Yann</creatorcontrib><title>Reynolds dependence of third-order velocity structure functions</title><title>Physics of fluids (1994)</title><description>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</description><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqdkFFLwzAUhYMoOKcP_oO-KnTmNu1N8yRjOCcMBNHn0N4krFKbknSD_XtXNty7T_dw-c6Bcxi7Bz4DjuIJZoBCcRAXbAK8VKlExMtRS54iCrhmNzF-c86FynDCnj_svvOtiYmxve2M7cgm3iXDpgkm9cHYkOxs66kZ9kkcwpaGbbCJ23Y0NL6Lt-zKVW20d6c7ZV_Ll8_FKl2_v74t5uuUcpENKXIqc146B0SZqk1BBeW5sq5WqARCllcoaiIqJEmpsFQkoQCXF9KBdEZM2cMxd1O1ug_NTxX22leNXs3XevxxDqXArNzBmaXgYwzW_RmA63ElDfq00oF9PLLx0LAaK_0P3vlwBnVvnPgFrUB1Mw</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Gagne, Yves</creator><creator>Castaing, Bernard</creator><creator>Baudet, Christophe</creator><creator>Malécot, Yann</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7477-1818</orcidid></search><sort><creationdate>20040201</creationdate><title>Reynolds dependence of third-order velocity structure functions</title><author>Gagne, Yves ; Castaing, Bernard ; Baudet, Christophe ; Malécot, Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-60c8408ff1cc29bd5c5c449efb96936124a63bccc57c779689c7151f457f17fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagne, Yves</creatorcontrib><creatorcontrib>Castaing, Bernard</creatorcontrib><creatorcontrib>Baudet, Christophe</creatorcontrib><creatorcontrib>Malécot, Yann</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagne, Yves</au><au>Castaing, Bernard</au><au>Baudet, Christophe</au><au>Malécot, Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reynolds dependence of third-order velocity structure functions</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>16</volume><issue>2</issue><spage>482</spage><epage>485</epage><pages>482-485</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We study the experimental dependence of the third-order velocity structure function on the Taylor based Reynolds number, obtained in different flow types over the range 72⩽R λ ⩽2260. As expected, when the Reynolds number is increasing, the third-order velocity structure functions (plotted in a compensated way) converge very slowly to a possible −4/5 plateau value according to the Kolmogorov 41 theory. Actually, each of these normalized third-order functions exhibits a maximum, at a scale close to the Taylor microscale λ. In this Brief Communication, we show that experimental data are in good agreement with the recent predictions of Qian and Lundgren. We also suggest that, from an experimental point of view, a log-similar plot suits very well to study carefully the behavior of the third-order velocity structure functions with the flow Reynolds number.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1639013</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7477-1818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2004-02, Vol.16 (2), p.482-485
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_1639013
source AIP Journals Complete; AIP Digital Archive
subjects Engineering Sciences
Fluid mechanics
Fluids mechanics
Mechanics
Physics
title Reynolds dependence of third-order velocity structure functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reynolds%20dependence%20of%20third-order%20velocity%20structure%20functions&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Gagne,%20Yves&rft.date=2004-02-01&rft.volume=16&rft.issue=2&rft.spage=482&rft.epage=485&rft.pages=482-485&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1639013&rft_dat=%3Chal_scita%3Eoai_HAL_hal_00183628v1%3C/hal_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true