Density waves in gravity-driven granular flow through a channel

A molecular-dynamic computer simulation is used to examine rapid granular flow in a vertical channel. A two-dimensional event driven algorithm is used with periodic boundary conditions in the flow direction and solid walls in the lateral direction. Flow in the channel leads to an inhomogeneous distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2002-09, Vol.14 (9), p.3309-3326
Hauptverfasser: Liss, Elizabeth D., Conway, Stephen L., Glasser, Benjamin J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3326
container_issue 9
container_start_page 3309
container_title Physics of fluids (1994)
container_volume 14
creator Liss, Elizabeth D.
Conway, Stephen L.
Glasser, Benjamin J.
description A molecular-dynamic computer simulation is used to examine rapid granular flow in a vertical channel. A two-dimensional event driven algorithm is used with periodic boundary conditions in the flow direction and solid walls in the lateral direction. Flow in the channel leads to an inhomogeneous distribution of the particles and two distinct types of density waves are identified: An S-shaped wave and a clump. The density waves are further characterized by quantifying their temporal evolution using Fourier methods and examining local and global flow properties of the system, including velocities, mass fluxes, granular temperatures, and stresses. A parametric study is used to characterize the effect of the system parameters on the density waves. In particular we are able to show that the dynamics of large systems are often qualitatively and quantitatively different from those of small systems. Finally, the types of density waves and dominant Fourier modes observed in our work are compared to those that are predicted using a linear stability analysis of equations of motion for rapid granular flow.
doi_str_mv 10.1063/1.1499126
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1499126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_1499126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-8327e1e24080e316341eed8221326f4a183d9a259639676c419ca1922c9df04a3</originalsourceid><addsrcrecordid>eNp9z8tKAzEUBuAgCtbqwjfIViE1J4lnJiuRWi9QcKPrEDJJJzLOlGQ6pW9va4suBFfnwscPPyGXwCfAUd7ABJTWIPCIjICXmhWIeLzbC84QJZySs5w_OOdSCxyRuwff5thv6NoOPtPY0kWyw_bBqhQH_322q8YmGppuTfs6datFTS11tW1b35yTk2Cb7C8Oc0zeH2dv02c2f316md7PmRNC96yUovDgheIl9xJQKvC-KoUAKTAoC6WstBW3GqXGAp0C7SxoIZyuAldWjsnVPtelLufkg1mm-GnTxgA3u-YGzKH51l7vbXaxt33s2h88dOkXmmUV_sN_k78Acttl1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density waves in gravity-driven granular flow through a channel</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Liss, Elizabeth D. ; Conway, Stephen L. ; Glasser, Benjamin J.</creator><creatorcontrib>Liss, Elizabeth D. ; Conway, Stephen L. ; Glasser, Benjamin J.</creatorcontrib><description>A molecular-dynamic computer simulation is used to examine rapid granular flow in a vertical channel. A two-dimensional event driven algorithm is used with periodic boundary conditions in the flow direction and solid walls in the lateral direction. Flow in the channel leads to an inhomogeneous distribution of the particles and two distinct types of density waves are identified: An S-shaped wave and a clump. The density waves are further characterized by quantifying their temporal evolution using Fourier methods and examining local and global flow properties of the system, including velocities, mass fluxes, granular temperatures, and stresses. A parametric study is used to characterize the effect of the system parameters on the density waves. In particular we are able to show that the dynamics of large systems are often qualitatively and quantitatively different from those of small systems. Finally, the types of density waves and dominant Fourier modes observed in our work are compared to those that are predicted using a linear stability analysis of equations of motion for rapid granular flow.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.1499126</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><ispartof>Physics of fluids (1994), 2002-09, Vol.14 (9), p.3309-3326</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-8327e1e24080e316341eed8221326f4a183d9a259639676c419ca1922c9df04a3</citedby><cites>FETCH-LOGICAL-c229t-8327e1e24080e316341eed8221326f4a183d9a259639676c419ca1922c9df04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Liss, Elizabeth D.</creatorcontrib><creatorcontrib>Conway, Stephen L.</creatorcontrib><creatorcontrib>Glasser, Benjamin J.</creatorcontrib><title>Density waves in gravity-driven granular flow through a channel</title><title>Physics of fluids (1994)</title><description>A molecular-dynamic computer simulation is used to examine rapid granular flow in a vertical channel. A two-dimensional event driven algorithm is used with periodic boundary conditions in the flow direction and solid walls in the lateral direction. Flow in the channel leads to an inhomogeneous distribution of the particles and two distinct types of density waves are identified: An S-shaped wave and a clump. The density waves are further characterized by quantifying their temporal evolution using Fourier methods and examining local and global flow properties of the system, including velocities, mass fluxes, granular temperatures, and stresses. A parametric study is used to characterize the effect of the system parameters on the density waves. In particular we are able to show that the dynamics of large systems are often qualitatively and quantitatively different from those of small systems. Finally, the types of density waves and dominant Fourier modes observed in our work are compared to those that are predicted using a linear stability analysis of equations of motion for rapid granular flow.</description><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9z8tKAzEUBuAgCtbqwjfIViE1J4lnJiuRWi9QcKPrEDJJJzLOlGQ6pW9va4suBFfnwscPPyGXwCfAUd7ABJTWIPCIjICXmhWIeLzbC84QJZySs5w_OOdSCxyRuwff5thv6NoOPtPY0kWyw_bBqhQH_322q8YmGppuTfs6datFTS11tW1b35yTk2Cb7C8Oc0zeH2dv02c2f316md7PmRNC96yUovDgheIl9xJQKvC-KoUAKTAoC6WstBW3GqXGAp0C7SxoIZyuAldWjsnVPtelLufkg1mm-GnTxgA3u-YGzKH51l7vbXaxt33s2h88dOkXmmUV_sN_k78Acttl1w</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Liss, Elizabeth D.</creator><creator>Conway, Stephen L.</creator><creator>Glasser, Benjamin J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200209</creationdate><title>Density waves in gravity-driven granular flow through a channel</title><author>Liss, Elizabeth D. ; Conway, Stephen L. ; Glasser, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-8327e1e24080e316341eed8221326f4a183d9a259639676c419ca1922c9df04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liss, Elizabeth D.</creatorcontrib><creatorcontrib>Conway, Stephen L.</creatorcontrib><creatorcontrib>Glasser, Benjamin J.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liss, Elizabeth D.</au><au>Conway, Stephen L.</au><au>Glasser, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density waves in gravity-driven granular flow through a channel</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2002-09</date><risdate>2002</risdate><volume>14</volume><issue>9</issue><spage>3309</spage><epage>3326</epage><pages>3309-3326</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A molecular-dynamic computer simulation is used to examine rapid granular flow in a vertical channel. A two-dimensional event driven algorithm is used with periodic boundary conditions in the flow direction and solid walls in the lateral direction. Flow in the channel leads to an inhomogeneous distribution of the particles and two distinct types of density waves are identified: An S-shaped wave and a clump. The density waves are further characterized by quantifying their temporal evolution using Fourier methods and examining local and global flow properties of the system, including velocities, mass fluxes, granular temperatures, and stresses. A parametric study is used to characterize the effect of the system parameters on the density waves. In particular we are able to show that the dynamics of large systems are often qualitatively and quantitatively different from those of small systems. Finally, the types of density waves and dominant Fourier modes observed in our work are compared to those that are predicted using a linear stability analysis of equations of motion for rapid granular flow.</abstract><doi>10.1063/1.1499126</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2002-09, Vol.14 (9), p.3309-3326
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_1_1499126
source AIP Journals Complete; AIP Digital Archive
title Density waves in gravity-driven granular flow through a channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20waves%20in%20gravity-driven%20granular%20flow%20through%20a%20channel&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Liss,%20Elizabeth%20D.&rft.date=2002-09&rft.volume=14&rft.issue=9&rft.spage=3309&rft.epage=3326&rft.pages=3309-3326&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.1499126&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_1499126%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true