Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors
We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs,...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 1999-07, Vol.70 (7), p.2912-2916 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2916 |
---|---|
container_issue | 7 |
container_start_page | 2912 |
container_title | Review of scientific instruments |
container_volume | 70 |
creator | Vickers, J. S. Chakrabarti, S. |
description | We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs, to be surrounded by an active event-processing region. The anode region is made from a rectangular array of pads that are formed using the metal interconnect layers of the CMOS process. Individual pads are electrically connected to form isolated arrays of rows and columns; each row terminates at a well of one charge-coupled device (CCD) register, and each column terminates at a well of a second orthogonal CCD register. The distribution of charge within each register is used to encode the charge-cloud coordinates. A two-dimensional prototype anode was constructed with 128×80 pixels spaced at 50 μm intervals; the anode readout rate is 31 250 Hz. Subpixel centroiding techniques can be employed to reduce the number of pixels that must be read for a given resolution. We envision a rugged, compact, low-power, and low-mass single-substrate imaging anode with a direct
(x,y)
digital interface. The design offers large array formats with inherent pixel linearity, orthogonality, and stability. An identified upgrade path promises orders-of-magnitude increases in speed (up to
10
6
photons s
−1
)
and dynamic range, while maintaining large pixel count (>4000×4000) and MCP pore-limited resolution ( |
doi_str_mv | 10.1063/1.1149849 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1149849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-8ff2aca2cccda206346fb42a7e0285729433f9aa69279e9b236deb5c484a2bec3</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv8FeFVLzr7uboxStQsGDevKwzGYnbWSblCQofnsjLXp3LgMzPx7vPUIuOZtxVssbPuNc6VbpIzLhrNW0qYU8JhPGpKJ1o9pTcpbSOysz53xC3p7d6EzwFHwYsBowo8khVp8ubyrnM64jZBwqHMs9Bu9Mqmz5b52JwWzAexzpbixM5bawdn79q5HOyYmFMeHFYU_J6_3dy-KBrp6Wj4vbFTVCN5m21gowIIwxA4gSQtW2VwIaZKKdN0IrKa0GqLVoNOpeyHrAfm5Uq0D0aOSUXO11i6WUItpuF4uZ-NVx1v200vHu0Ephr_dsMi5DdsH_D_4I8Q_sdoOV31Qrcvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Vickers, J. S. ; Chakrabarti, S.</creator><creatorcontrib>Vickers, J. S. ; Chakrabarti, S.</creatorcontrib><description>We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs, to be surrounded by an active event-processing region. The anode region is made from a rectangular array of pads that are formed using the metal interconnect layers of the CMOS process. Individual pads are electrically connected to form isolated arrays of rows and columns; each row terminates at a well of one charge-coupled device (CCD) register, and each column terminates at a well of a second orthogonal CCD register. The distribution of charge within each register is used to encode the charge-cloud coordinates. A two-dimensional prototype anode was constructed with 128×80 pixels spaced at 50 μm intervals; the anode readout rate is 31 250 Hz. Subpixel centroiding techniques can be employed to reduce the number of pixels that must be read for a given resolution. We envision a rugged, compact, low-power, and low-mass single-substrate imaging anode with a direct
(x,y)
digital interface. The design offers large array formats with inherent pixel linearity, orthogonality, and stability. An identified upgrade path promises orders-of-magnitude increases in speed (up to
10
6
photons s
−1
)
and dynamic range, while maintaining large pixel count (>4000×4000) and MCP pore-limited resolution (<8 μm).</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1149849</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><ispartof>Review of scientific instruments, 1999-07, Vol.70 (7), p.2912-2916</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-8ff2aca2cccda206346fb42a7e0285729433f9aa69279e9b236deb5c484a2bec3</citedby><cites>FETCH-LOGICAL-c297t-8ff2aca2cccda206346fb42a7e0285729433f9aa69279e9b236deb5c484a2bec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1149849$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids></links><search><creatorcontrib>Vickers, J. S.</creatorcontrib><creatorcontrib>Chakrabarti, S.</creatorcontrib><title>Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors</title><title>Review of scientific instruments</title><description>We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs, to be surrounded by an active event-processing region. The anode region is made from a rectangular array of pads that are formed using the metal interconnect layers of the CMOS process. Individual pads are electrically connected to form isolated arrays of rows and columns; each row terminates at a well of one charge-coupled device (CCD) register, and each column terminates at a well of a second orthogonal CCD register. The distribution of charge within each register is used to encode the charge-cloud coordinates. A two-dimensional prototype anode was constructed with 128×80 pixels spaced at 50 μm intervals; the anode readout rate is 31 250 Hz. Subpixel centroiding techniques can be employed to reduce the number of pixels that must be read for a given resolution. We envision a rugged, compact, low-power, and low-mass single-substrate imaging anode with a direct
(x,y)
digital interface. The design offers large array formats with inherent pixel linearity, orthogonality, and stability. An identified upgrade path promises orders-of-magnitude increases in speed (up to
10
6
photons s
−1
)
and dynamic range, while maintaining large pixel count (>4000×4000) and MCP pore-limited resolution (<8 μm).</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv8FeFVLzr7uboxStQsGDevKwzGYnbWSblCQofnsjLXp3LgMzPx7vPUIuOZtxVssbPuNc6VbpIzLhrNW0qYU8JhPGpKJ1o9pTcpbSOysz53xC3p7d6EzwFHwYsBowo8khVp8ubyrnM64jZBwqHMs9Bu9Mqmz5b52JwWzAexzpbixM5bawdn79q5HOyYmFMeHFYU_J6_3dy-KBrp6Wj4vbFTVCN5m21gowIIwxA4gSQtW2VwIaZKKdN0IrKa0GqLVoNOpeyHrAfm5Uq0D0aOSUXO11i6WUItpuF4uZ-NVx1v200vHu0Ephr_dsMi5DdsH_D_4I8Q_sdoOV31Qrcvk</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Vickers, J. S.</creator><creator>Chakrabarti, S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors</title><author>Vickers, J. S. ; Chakrabarti, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-8ff2aca2cccda206346fb42a7e0285729433f9aa69279e9b236deb5c484a2bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vickers, J. S.</creatorcontrib><creatorcontrib>Chakrabarti, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vickers, J. S.</au><au>Chakrabarti, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors</atitle><jtitle>Review of scientific instruments</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>70</volume><issue>7</issue><spage>2912</spage><epage>2916</epage><pages>2912-2916</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs, to be surrounded by an active event-processing region. The anode region is made from a rectangular array of pads that are formed using the metal interconnect layers of the CMOS process. Individual pads are electrically connected to form isolated arrays of rows and columns; each row terminates at a well of one charge-coupled device (CCD) register, and each column terminates at a well of a second orthogonal CCD register. The distribution of charge within each register is used to encode the charge-cloud coordinates. A two-dimensional prototype anode was constructed with 128×80 pixels spaced at 50 μm intervals; the anode readout rate is 31 250 Hz. Subpixel centroiding techniques can be employed to reduce the number of pixels that must be read for a given resolution. We envision a rugged, compact, low-power, and low-mass single-substrate imaging anode with a direct
(x,y)
digital interface. The design offers large array formats with inherent pixel linearity, orthogonality, and stability. An identified upgrade path promises orders-of-magnitude increases in speed (up to
10
6
photons s
−1
)
and dynamic range, while maintaining large pixel count (>4000×4000) and MCP pore-limited resolution (<8 μm).</abstract><doi>10.1063/1.1149849</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 1999-07, Vol.70 (7), p.2912-2916 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1149849 |
source | AIP Journals Complete; AIP Digital Archive |
title | Silicon-anode detector with integrated electronics for microchannel-plate imaging detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon-anode%20detector%20with%20integrated%20electronics%20for%20microchannel-plate%20imaging%20detectors&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Vickers,%20J.%20S.&rft.date=1999-07-01&rft.volume=70&rft.issue=7&rft.spage=2912&rft.epage=2916&rft.pages=2912-2916&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1149849&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |