Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers
Multilayers of Pt/C, W/Si, and W/B4C have been developed as a reflector and dispersive element to be applied to the beamline optical system of the synchrotron radiation (SR) in 1‐ to 20‐A region. Pt/C(2d=105 A, N=10) overcoated with Pt(d=100 A) is useful in a glazing incidence optics, which makes it...
Gespeichert in:
Veröffentlicht in: | Review of Scientific Instruments 1992-01, Vol.63 (1), p.1217-1220 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 1 |
container_start_page | 1217 |
container_title | Review of Scientific Instruments |
container_volume | 63 |
creator | Yamashita, K. Watanabe, M. Matsudo, O. Yamazaki, J. Hatsukade, I. Ishigami, T. Takahama, S. Tamura, K. Ohtani, M. |
description | Multilayers of Pt/C, W/Si, and W/B4C have been developed as a reflector and dispersive element to be applied to the beamline optical system of the synchrotron radiation (SR) in 1‐ to 20‐A region. Pt/C(2d=105 A, N=10) overcoated with Pt(d=100 A) is useful in a glazing incidence optics, which makes it possible to extend the wavelength region to the shorter side at the fixed incidence angle. W/Si(2d=53 A, N=200) and W/B4C(2d=31 A, N=300) are utilized as a dispersive element of double‐crystal monochromator (DXM). The second order of Bragg reflection of W/Si is matched to the first order of KAP(2d=26.6 A) crystal. The characterization of these multilayers was carried out by using characteristic x rays and monochromatized SR in 1.5–8 keV. DXM was made of a combination of W/Si and KAP and a pair of W/B4C. Multilayers are used as the first crystal to protect the damage of the crystal caused by the strong irradiation of SR. A pair of W/B4C is aimed at getting high throughput. The energy resolution of these combinations was evaluated with Na–K absorption edge of NaCl around 1.07 keV, which was a bit poor compared to a pair of beryl crystals. |
doi_str_mv | 10.1063/1.1143087 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1143087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-1ab896ac411a1646419d61599c51dcbd7d9efbad32589175c3109aed56aae2a93</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJEKg4A9c0IBw2PE-7C3B4iVFooGCyhrvrmGRY1u7DlJS8Q_8IV-CQyKggWlmdHTmFpeQQ6AToJKdwQSAM5qlW2QENFNxKhO2TUaUMh7LlGe7ZC-EFzqMABiRx_wZPereerfE3rVN1FZRVw9nM599vL1r9GXbnEb9vHkKvW0GFFzt9IphY37zC55Hs3nduxoX1od9slNhHezBZo_Jw9XlfX4TT--ub_PzaaxZwvsYsMyURM0BECSXHJSRIJTSAowuTWqUrUo0LBGZglRoBlShNUIi2gQVG5Pjda72bQjeVkXn3Qz9ogBarDopoNh0MrhHa7fDoLGuPDbahe8HkSQ0yWDQTtZa0K7_auXfzD_l19b_iEVnKvYJUWiAkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers</title><source>AIP Digital Archive</source><creator>Yamashita, K. ; Watanabe, M. ; Matsudo, O. ; Yamazaki, J. ; Hatsukade, I. ; Ishigami, T. ; Takahama, S. ; Tamura, K. ; Ohtani, M.</creator><creatorcontrib>Yamashita, K. ; Watanabe, M. ; Matsudo, O. ; Yamazaki, J. ; Hatsukade, I. ; Ishigami, T. ; Takahama, S. ; Tamura, K. ; Ohtani, M.</creatorcontrib><description>Multilayers of Pt/C, W/Si, and W/B4C have been developed as a reflector and dispersive element to be applied to the beamline optical system of the synchrotron radiation (SR) in 1‐ to 20‐A region. Pt/C(2d=105 A, N=10) overcoated with Pt(d=100 A) is useful in a glazing incidence optics, which makes it possible to extend the wavelength region to the shorter side at the fixed incidence angle. W/Si(2d=53 A, N=200) and W/B4C(2d=31 A, N=300) are utilized as a dispersive element of double‐crystal monochromator (DXM). The second order of Bragg reflection of W/Si is matched to the first order of KAP(2d=26.6 A) crystal. The characterization of these multilayers was carried out by using characteristic x rays and monochromatized SR in 1.5–8 keV. DXM was made of a combination of W/Si and KAP and a pair of W/B4C. Multilayers are used as the first crystal to protect the damage of the crystal caused by the strong irradiation of SR. A pair of W/B4C is aimed at getting high throughput. The energy resolution of these combinations was evaluated with Na–K absorption edge of NaCl around 1.07 keV, which was a bit poor compared to a pair of beryl crystals.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1143087</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; X- and γ-ray instruments and techniques</subject><ispartof>Review of Scientific Instruments, 1992-01, Vol.63 (1), p.1217-1220</ispartof><rights>American Institute of Physics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-1ab896ac411a1646419d61599c51dcbd7d9efbad32589175c3109aed56aae2a93</citedby><cites>FETCH-LOGICAL-c324t-1ab896ac411a1646419d61599c51dcbd7d9efbad32589175c3109aed56aae2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1143087$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,1554,4036,4037,23911,23912,25121,27905,27906,76139</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5220281$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Matsudo, O.</creatorcontrib><creatorcontrib>Yamazaki, J.</creatorcontrib><creatorcontrib>Hatsukade, I.</creatorcontrib><creatorcontrib>Ishigami, T.</creatorcontrib><creatorcontrib>Takahama, S.</creatorcontrib><creatorcontrib>Tamura, K.</creatorcontrib><creatorcontrib>Ohtani, M.</creatorcontrib><title>Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers</title><title>Review of Scientific Instruments</title><description>Multilayers of Pt/C, W/Si, and W/B4C have been developed as a reflector and dispersive element to be applied to the beamline optical system of the synchrotron radiation (SR) in 1‐ to 20‐A region. Pt/C(2d=105 A, N=10) overcoated with Pt(d=100 A) is useful in a glazing incidence optics, which makes it possible to extend the wavelength region to the shorter side at the fixed incidence angle. W/Si(2d=53 A, N=200) and W/B4C(2d=31 A, N=300) are utilized as a dispersive element of double‐crystal monochromator (DXM). The second order of Bragg reflection of W/Si is matched to the first order of KAP(2d=26.6 A) crystal. The characterization of these multilayers was carried out by using characteristic x rays and monochromatized SR in 1.5–8 keV. DXM was made of a combination of W/Si and KAP and a pair of W/B4C. Multilayers are used as the first crystal to protect the damage of the crystal caused by the strong irradiation of SR. A pair of W/B4C is aimed at getting high throughput. The energy resolution of these combinations was evaluated with Na–K absorption edge of NaCl around 1.07 keV, which was a bit poor compared to a pair of beryl crystals.</description><subject>Exact sciences and technology</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>X- and γ-ray instruments and techniques</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJEKg4A9c0IBw2PE-7C3B4iVFooGCyhrvrmGRY1u7DlJS8Q_8IV-CQyKggWlmdHTmFpeQQ6AToJKdwQSAM5qlW2QENFNxKhO2TUaUMh7LlGe7ZC-EFzqMABiRx_wZPereerfE3rVN1FZRVw9nM599vL1r9GXbnEb9vHkKvW0GFFzt9IphY37zC55Hs3nduxoX1od9slNhHezBZo_Jw9XlfX4TT--ub_PzaaxZwvsYsMyURM0BECSXHJSRIJTSAowuTWqUrUo0LBGZglRoBlShNUIi2gQVG5Pjda72bQjeVkXn3Qz9ogBarDopoNh0MrhHa7fDoLGuPDbahe8HkSQ0yWDQTtZa0K7_auXfzD_l19b_iEVnKvYJUWiAkg</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Yamashita, K.</creator><creator>Watanabe, M.</creator><creator>Matsudo, O.</creator><creator>Yamazaki, J.</creator><creator>Hatsukade, I.</creator><creator>Ishigami, T.</creator><creator>Takahama, S.</creator><creator>Tamura, K.</creator><creator>Ohtani, M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199201</creationdate><title>Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers</title><author>Yamashita, K. ; Watanabe, M. ; Matsudo, O. ; Yamazaki, J. ; Hatsukade, I. ; Ishigami, T. ; Takahama, S. ; Tamura, K. ; Ohtani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-1ab896ac411a1646419d61599c51dcbd7d9efbad32589175c3109aed56aae2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>X- and γ-ray instruments and techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, K.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Matsudo, O.</creatorcontrib><creatorcontrib>Yamazaki, J.</creatorcontrib><creatorcontrib>Hatsukade, I.</creatorcontrib><creatorcontrib>Ishigami, T.</creatorcontrib><creatorcontrib>Takahama, S.</creatorcontrib><creatorcontrib>Tamura, K.</creatorcontrib><creatorcontrib>Ohtani, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Review of Scientific Instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, K.</au><au>Watanabe, M.</au><au>Matsudo, O.</au><au>Yamazaki, J.</au><au>Hatsukade, I.</au><au>Ishigami, T.</au><au>Takahama, S.</au><au>Tamura, K.</au><au>Ohtani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers</atitle><jtitle>Review of Scientific Instruments</jtitle><date>1992-01</date><risdate>1992</risdate><volume>63</volume><issue>1</issue><spage>1217</spage><epage>1220</epage><pages>1217-1220</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Multilayers of Pt/C, W/Si, and W/B4C have been developed as a reflector and dispersive element to be applied to the beamline optical system of the synchrotron radiation (SR) in 1‐ to 20‐A region. Pt/C(2d=105 A, N=10) overcoated with Pt(d=100 A) is useful in a glazing incidence optics, which makes it possible to extend the wavelength region to the shorter side at the fixed incidence angle. W/Si(2d=53 A, N=200) and W/B4C(2d=31 A, N=300) are utilized as a dispersive element of double‐crystal monochromator (DXM). The second order of Bragg reflection of W/Si is matched to the first order of KAP(2d=26.6 A) crystal. The characterization of these multilayers was carried out by using characteristic x rays and monochromatized SR in 1.5–8 keV. DXM was made of a combination of W/Si and KAP and a pair of W/B4C. Multilayers are used as the first crystal to protect the damage of the crystal caused by the strong irradiation of SR. A pair of W/B4C is aimed at getting high throughput. The energy resolution of these combinations was evaluated with Na–K absorption edge of NaCl around 1.07 keV, which was a bit poor compared to a pair of beryl crystals.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.1143087</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of Scientific Instruments, 1992-01, Vol.63 (1), p.1217-1220 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_1_1143087 |
source | AIP Digital Archive |
subjects | Exact sciences and technology Instruments, apparatus, components and techniques common to several branches of physics and astronomy Physics X- and γ-ray instruments and techniques |
title | Characterization of platinum–carbon, tungsten–silicon, and tungsten–B4C multilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20platinum%E2%80%93carbon,%20tungsten%E2%80%93silicon,%20and%20tungsten%E2%80%93B4C%20multilayers&rft.jtitle=Review%20of%20Scientific%20Instruments&rft.au=Yamashita,%20K.&rft.date=1992-01&rft.volume=63&rft.issue=1&rft.spage=1217&rft.epage=1220&rft.pages=1217-1220&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1143087&rft_dat=%3Cscitation_pasca%3Ersi%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |