Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities

The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two‐chamber hydrogen negative‐ion‐source system subject to the beam‐line constraint of a maximum gas pressure, the density of vibrationally excited molecules re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Scientific Instruments 1992-04, Vol.63 (4), p.2702-2704
1. Verfasser: Hiskes, J. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2704
container_issue 4
container_start_page 2702
container_title Review of Scientific Instruments
container_volume 63
creator Hiskes, J. R.
description The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two‐chamber hydrogen negative‐ion‐source system subject to the beam‐line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first‐chamber asymptote, there exists a spatially dependent maximum negative‐ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen‐based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications.
doi_str_mv 10.1063/1.1142828
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_1142828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-e9fdca02723982930557ef87eb54b7211f12671d27d31c5878e549d914fb28b83</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKsL3yBbxalJ5ieZZSlqhYIbXQ-Z5KZGOpMhSQvduXQpPoHP1idxOhbcezeXy_3OgXMQuqRkQkmR3tIJpRkTTByhESWiTHjB0mM0IiTNkoJn4hSdhfBG-skpHaHvaXSNVbjzTkEIEG6w8i4EHEBF69r-lq3GHuRwYi8jBNzCHpZ-i43zuHEaVrZd4tet9m4Jbf9fymg3sHv_3IuCW_teMDhZDW20xio5-DmDXRdts27wfPfxhdXa-x7APRVstBDO0YmRqwAXhz1GL_d3z7N5snh6eJxNF4liJY8JlEYrSRhnaSlYmZI852AEhzrPas4oNZQVnGrGdUpVLriAPCt1STNTM1GLdIyufn2H-B5M1Xnb9BErSqp9tRWtDtX27PUvG5SNQ47_wRvn_8Cq0yb9Af4ljRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities</title><source>AIP Digital Archive</source><creator>Hiskes, J. R.</creator><creatorcontrib>Hiskes, J. R.</creatorcontrib><description>The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two‐chamber hydrogen negative‐ion‐source system subject to the beam‐line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first‐chamber asymptote, there exists a spatially dependent maximum negative‐ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen‐based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1142828</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><ispartof>Review of Scientific Instruments, 1992-04, Vol.63 (4), p.2702-2704</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-e9fdca02723982930557ef87eb54b7211f12671d27d31c5878e549d914fb28b83</citedby><cites>FETCH-LOGICAL-c297t-e9fdca02723982930557ef87eb54b7211f12671d27d31c5878e549d914fb28b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1142828$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1559,23930,23931,25140,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Hiskes, J. R.</creatorcontrib><title>Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities</title><title>Review of Scientific Instruments</title><description>The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two‐chamber hydrogen negative‐ion‐source system subject to the beam‐line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first‐chamber asymptote, there exists a spatially dependent maximum negative‐ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen‐based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKsL3yBbxalJ5ieZZSlqhYIbXQ-Z5KZGOpMhSQvduXQpPoHP1idxOhbcezeXy_3OgXMQuqRkQkmR3tIJpRkTTByhESWiTHjB0mM0IiTNkoJn4hSdhfBG-skpHaHvaXSNVbjzTkEIEG6w8i4EHEBF69r-lq3GHuRwYi8jBNzCHpZ-i43zuHEaVrZd4tet9m4Jbf9fymg3sHv_3IuCW_teMDhZDW20xio5-DmDXRdts27wfPfxhdXa-x7APRVstBDO0YmRqwAXhz1GL_d3z7N5snh6eJxNF4liJY8JlEYrSRhnaSlYmZI852AEhzrPas4oNZQVnGrGdUpVLriAPCt1STNTM1GLdIyufn2H-B5M1Xnb9BErSqp9tRWtDtX27PUvG5SNQ47_wRvn_8Cq0yb9Af4ljRQ</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Hiskes, J. R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920401</creationdate><title>Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities</title><author>Hiskes, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-e9fdca02723982930557ef87eb54b7211f12671d27d31c5878e549d914fb28b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiskes, J. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Review of Scientific Instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiskes, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities</atitle><jtitle>Review of Scientific Instruments</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>63</volume><issue>4</issue><spage>2702</spage><epage>2704</epage><pages>2702-2704</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two‐chamber hydrogen negative‐ion‐source system subject to the beam‐line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first‐chamber asymptote, there exists a spatially dependent maximum negative‐ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen‐based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications.</abstract><doi>10.1063/1.1142828</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of Scientific Instruments, 1992-04, Vol.63 (4), p.2702-2704
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_1_1142828
source AIP Digital Archive
title Atomic processes, cross sections, and reaction rates necessary for modeling hydrogen negative‐ion sources and identification of optimum H− current densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20processes,%20cross%20sections,%20and%20reaction%20rates%20necessary%20for%20modeling%20hydrogen%20negative%E2%80%90ion%20sources%20and%20identification%20of%20optimum%20H%E2%88%92%20current%20densities&rft.jtitle=Review%20of%20Scientific%20Instruments&rft.au=Hiskes,%20J.%20R.&rft.date=1992-04-01&rft.volume=63&rft.issue=4&rft.spage=2702&rft.epage=2704&rft.pages=2702-2704&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1142828&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true