Deep learning for energetic material detonation performance
We present advances in accurate, extremely rapid prediction of detonation performance for energetic molecules. These models may be integrated into larger efforts for high-throughput virtual screening, molecular optimization, or an experimentalist's selection of molecules before attempting a haz...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2272 |
creator | Barnes, Brian C. |
description | We present advances in accurate, extremely rapid prediction of detonation
performance for energetic molecules. These models may be integrated into larger
efforts for high-throughput virtual screening, molecular optimization, or an
experimentalist's selection of molecules before attempting a hazardous
synthesis. Our machine learning workflow utilizes (a) a reference dataset
generated from quantum mechanical calculations and the Cheetah thermochemical
code, and (b) a directed message-passing neural network (D-MPNN) for nonlinear
regression. The D-MPNN is a graph convolutional deep learning model best used
with large datasets such as the one in this study. We create models to predict
detonation velocity, detonation pressure, heat of formation, and density.
Critically, prediction of the detonation properties requires absolutely no
information other than the skeletal formula for a molecule. Molecules evaluated
are CHNO-containing molecules from public datasets. Neural net architecture and
training, including the Python workflow for parallel, automated dataset
generation are discussed. The D- MPNN is also evaluated against LASSO and
Kamlet-Jacobs models. |
doi_str_mv | 10.1063/12.0001089 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_12_0001089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-2d42fe729be8d3e5f0d8b55fd72602f0d68c422cee008956fd5ea3fefb8d05883</originalsourceid><addsrcrecordid>eNp9UMFKxDAUDKJgXb34BblL15ekSVM8yeqqsOBFwVtJk5cl0qYlDYJ_b9U9ePI0DMwMM0PIJYM1AyWuGV8DAAPdHJGCScnKWjF1TAqApip5Jd5Oydk8vwPwpq51QW7uECfao0kxxD31Y6IYMe0xB0sHkzEF01OHeYwmhzHSCdMiGky0eE5OvOlnvDjgirxu7182j-Xu-eFpc7srrYAql9xV3GPNmw61Eyg9ON1J6V3NFfCFKW0rzi0iLL2l8k6iER59px1IrcWKXP3mzjbknxbtlMJg0mf7MaaW8fawuZ2c_0_NoP1-6Y9DfAG5q1oG</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep learning for energetic material detonation performance</title><source>AIP Journals Complete</source><creator>Barnes, Brian C.</creator><contributor>Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</contributor><creatorcontrib>Barnes, Brian C. ; Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</creatorcontrib><description>We present advances in accurate, extremely rapid prediction of detonation
performance for energetic molecules. These models may be integrated into larger
efforts for high-throughput virtual screening, molecular optimization, or an
experimentalist's selection of molecules before attempting a hazardous
synthesis. Our machine learning workflow utilizes (a) a reference dataset
generated from quantum mechanical calculations and the Cheetah thermochemical
code, and (b) a directed message-passing neural network (D-MPNN) for nonlinear
regression. The D-MPNN is a graph convolutional deep learning model best used
with large datasets such as the one in this study. We create models to predict
detonation velocity, detonation pressure, heat of formation, and density.
Critically, prediction of the detonation properties requires absolutely no
information other than the skeletal formula for a molecule. Molecules evaluated
are CHNO-containing molecules from public datasets. Neural net architecture and
training, including the Python workflow for parallel, automated dataset
generation are discussed. The D- MPNN is also evaluated against LASSO and
Kamlet-Jacobs models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0001089</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><ispartof>AIP conference proceedings, 2020, Vol.2272 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-2d42fe729be8d3e5f0d8b55fd72602f0d68c422cee008956fd5ea3fefb8d05883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/12.0001089$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><contributor>Zaug, Joseph</contributor><contributor>Germann, Timothy C.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Wixom, Ryan</contributor><contributor>Damm, David</contributor><contributor>Lane, J. Matthew D.</contributor><creatorcontrib>Barnes, Brian C.</creatorcontrib><title>Deep learning for energetic material detonation performance</title><title>AIP conference proceedings</title><description>We present advances in accurate, extremely rapid prediction of detonation
performance for energetic molecules. These models may be integrated into larger
efforts for high-throughput virtual screening, molecular optimization, or an
experimentalist's selection of molecules before attempting a hazardous
synthesis. Our machine learning workflow utilizes (a) a reference dataset
generated from quantum mechanical calculations and the Cheetah thermochemical
code, and (b) a directed message-passing neural network (D-MPNN) for nonlinear
regression. The D-MPNN is a graph convolutional deep learning model best used
with large datasets such as the one in this study. We create models to predict
detonation velocity, detonation pressure, heat of formation, and density.
Critically, prediction of the detonation properties requires absolutely no
information other than the skeletal formula for a molecule. Molecules evaluated
are CHNO-containing molecules from public datasets. Neural net architecture and
training, including the Python workflow for parallel, automated dataset
generation are discussed. The D- MPNN is also evaluated against LASSO and
Kamlet-Jacobs models.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNp9UMFKxDAUDKJgXb34BblL15ekSVM8yeqqsOBFwVtJk5cl0qYlDYJ_b9U9ePI0DMwMM0PIJYM1AyWuGV8DAAPdHJGCScnKWjF1TAqApip5Jd5Oydk8vwPwpq51QW7uECfao0kxxD31Y6IYMe0xB0sHkzEF01OHeYwmhzHSCdMiGky0eE5OvOlnvDjgirxu7182j-Xu-eFpc7srrYAql9xV3GPNmw61Eyg9ON1J6V3NFfCFKW0rzi0iLL2l8k6iER59px1IrcWKXP3mzjbknxbtlMJg0mf7MaaW8fawuZ2c_0_NoP1-6Y9DfAG5q1oG</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Barnes, Brian C.</creator><scope/></search><sort><creationdate>20201102</creationdate><title>Deep learning for energetic material detonation performance</title><author>Barnes, Brian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-2d42fe729be8d3e5f0d8b55fd72602f0d68c422cee008956fd5ea3fefb8d05883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, Brian C.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, Brian C.</au><au>Zaug, Joseph</au><au>Germann, Timothy C.</au><au>Armstrong, Michael R.</au><au>Wixom, Ryan</au><au>Damm, David</au><au>Lane, J. Matthew D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning for energetic material detonation performance</atitle><btitle>AIP conference proceedings</btitle><date>2020-11-02</date><risdate>2020</risdate><volume>2272</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We present advances in accurate, extremely rapid prediction of detonation
performance for energetic molecules. These models may be integrated into larger
efforts for high-throughput virtual screening, molecular optimization, or an
experimentalist's selection of molecules before attempting a hazardous
synthesis. Our machine learning workflow utilizes (a) a reference dataset
generated from quantum mechanical calculations and the Cheetah thermochemical
code, and (b) a directed message-passing neural network (D-MPNN) for nonlinear
regression. The D-MPNN is a graph convolutional deep learning model best used
with large datasets such as the one in this study. We create models to predict
detonation velocity, detonation pressure, heat of formation, and density.
Critically, prediction of the detonation properties requires absolutely no
information other than the skeletal formula for a molecule. Molecules evaluated
are CHNO-containing molecules from public datasets. Neural net architecture and
training, including the Python workflow for parallel, automated dataset
generation are discussed. The D- MPNN is also evaluated against LASSO and
Kamlet-Jacobs models.</abstract><doi>10.1063/12.0001089</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2272 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_12_0001089 |
source | AIP Journals Complete |
title | Deep learning for energetic material detonation performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20for%20energetic%20material%20detonation%20performance&rft.btitle=AIP%20conference%20proceedings&rft.au=Barnes,%20Brian%20C.&rft.date=2020-11-02&rft.volume=2272&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0001089&rft_dat=%3Cscitation%3Eacp%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |