Uniaxial wave propagation through copper mountain sandstone

Copper Mountain sandstone samples of thicknesses varying from 1.0mm to 3.6mm were tested in plane strain configuration at impact velocities from 168m/s to 529m/s. Two-dimensional (2D) images of sandstone samples, etched in a 1% Buffered Oxide Etchant (BOE), were captured with a Scanning Electron Mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Helminiak, Nathaniel S., Borg, John P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2272
creator Helminiak, Nathaniel S.
Borg, John P.
description Copper Mountain sandstone samples of thicknesses varying from 1.0mm to 3.6mm were tested in plane strain configuration at impact velocities from 168m/s to 529m/s. Two-dimensional (2D) images of sandstone samples, etched in a 1% Buffered Oxide Etchant (BOE), were captured with a Scanning Electron Microscope (SEM), then used to generate three-dimensional (3D) grain size distributions. To better inform design for future pressure-shear experiments, each plane strain test contained multiple sandstone samples of varying thicknesses to compare wave formation for a given shot velocity. The particle velocity induced at the back surface of the sample was measured using Photon Doppler Velocimetry (PDV). The dynamic experiments were simulated utilizing CTH and compared with experimental results.
doi_str_mv 10.1063/12.0000937
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_12_0000937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457401654</sourcerecordid><originalsourceid>FETCH-LOGICAL-p291t-3114397cccd765b2c9cd1fa0af04c44b2e65328fc302161f793702dcac235d873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMouFYv_oIFj7I1k88unqT4BQUvFryFNJttt7RJTLJV_72r7cGTcxkYnpl53xehS8BjwILeABnjoWoqj1ABnEMlBYhjVAwzVhFG307RWUprjEkt5aRAt3PX6c9Ob8oPvbNliD7opc6dd2VeRd8vV6XxIdhYbn3vsu5cmbRrUvbOnqOTVm-SvTj0EZo_3L9On6rZy-Pz9G5WBVJDrigAo7U0xjRS8AUxtWmg1Vi3mBnGFsQKTsmkNRQTENDKQT0mjdGGUN5MJB2hq_3dQd17b1NWa99HN7xUhHHJMAjOBup6TyXT5V8HKsRuq-OX2vmogKhDMio07X80YPWT5Z8N-g3yMWVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2457401654</pqid></control><display><type>conference_proceeding</type><title>Uniaxial wave propagation through copper mountain sandstone</title><source>AIP Journals Complete</source><creator>Helminiak, Nathaniel S. ; Borg, John P.</creator><contributor>Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</contributor><creatorcontrib>Helminiak, Nathaniel S. ; Borg, John P. ; Zaug, Joseph ; Germann, Timothy C. ; Armstrong, Michael R. ; Wixom, Ryan ; Damm, David ; Lane, J. Matthew D.</creatorcontrib><description>Copper Mountain sandstone samples of thicknesses varying from 1.0mm to 3.6mm were tested in plane strain configuration at impact velocities from 168m/s to 529m/s. Two-dimensional (2D) images of sandstone samples, etched in a 1% Buffered Oxide Etchant (BOE), were captured with a Scanning Electron Microscope (SEM), then used to generate three-dimensional (3D) grain size distributions. To better inform design for future pressure-shear experiments, each plane strain test contained multiple sandstone samples of varying thicknesses to compare wave formation for a given shot velocity. The particle velocity induced at the back surface of the sample was measured using Photon Doppler Velocimetry (PDV). The dynamic experiments were simulated utilizing CTH and compared with experimental results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0000937</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Copper ; Electron microscopes ; Etchants ; Grain size distribution ; Impact velocity ; Mountains ; Plane strain ; Sandstone ; Thickness ; Velocimetry ; Wave propagation</subject><ispartof>AIP conference proceedings, 2020, Vol.2272 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/12.0000937$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Zaug, Joseph</contributor><contributor>Germann, Timothy C.</contributor><contributor>Armstrong, Michael R.</contributor><contributor>Wixom, Ryan</contributor><contributor>Damm, David</contributor><contributor>Lane, J. Matthew D.</contributor><creatorcontrib>Helminiak, Nathaniel S.</creatorcontrib><creatorcontrib>Borg, John P.</creatorcontrib><title>Uniaxial wave propagation through copper mountain sandstone</title><title>AIP conference proceedings</title><description>Copper Mountain sandstone samples of thicknesses varying from 1.0mm to 3.6mm were tested in plane strain configuration at impact velocities from 168m/s to 529m/s. Two-dimensional (2D) images of sandstone samples, etched in a 1% Buffered Oxide Etchant (BOE), were captured with a Scanning Electron Microscope (SEM), then used to generate three-dimensional (3D) grain size distributions. To better inform design for future pressure-shear experiments, each plane strain test contained multiple sandstone samples of varying thicknesses to compare wave formation for a given shot velocity. The particle velocity induced at the back surface of the sample was measured using Photon Doppler Velocimetry (PDV). The dynamic experiments were simulated utilizing CTH and compared with experimental results.</description><subject>Copper</subject><subject>Electron microscopes</subject><subject>Etchants</subject><subject>Grain size distribution</subject><subject>Impact velocity</subject><subject>Mountains</subject><subject>Plane strain</subject><subject>Sandstone</subject><subject>Thickness</subject><subject>Velocimetry</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMouFYv_oIFj7I1k88unqT4BQUvFryFNJttt7RJTLJV_72r7cGTcxkYnpl53xehS8BjwILeABnjoWoqj1ABnEMlBYhjVAwzVhFG307RWUprjEkt5aRAt3PX6c9Ob8oPvbNliD7opc6dd2VeRd8vV6XxIdhYbn3vsu5cmbRrUvbOnqOTVm-SvTj0EZo_3L9On6rZy-Pz9G5WBVJDrigAo7U0xjRS8AUxtWmg1Vi3mBnGFsQKTsmkNRQTENDKQT0mjdGGUN5MJB2hq_3dQd17b1NWa99HN7xUhHHJMAjOBup6TyXT5V8HKsRuq-OX2vmogKhDMio07X80YPWT5Z8N-g3yMWVU</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Helminiak, Nathaniel S.</creator><creator>Borg, John P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201102</creationdate><title>Uniaxial wave propagation through copper mountain sandstone</title><author>Helminiak, Nathaniel S. ; Borg, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p291t-3114397cccd765b2c9cd1fa0af04c44b2e65328fc302161f793702dcac235d873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Copper</topic><topic>Electron microscopes</topic><topic>Etchants</topic><topic>Grain size distribution</topic><topic>Impact velocity</topic><topic>Mountains</topic><topic>Plane strain</topic><topic>Sandstone</topic><topic>Thickness</topic><topic>Velocimetry</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helminiak, Nathaniel S.</creatorcontrib><creatorcontrib>Borg, John P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helminiak, Nathaniel S.</au><au>Borg, John P.</au><au>Zaug, Joseph</au><au>Germann, Timothy C.</au><au>Armstrong, Michael R.</au><au>Wixom, Ryan</au><au>Damm, David</au><au>Lane, J. Matthew D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uniaxial wave propagation through copper mountain sandstone</atitle><btitle>AIP conference proceedings</btitle><date>2020-11-02</date><risdate>2020</risdate><volume>2272</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Copper Mountain sandstone samples of thicknesses varying from 1.0mm to 3.6mm were tested in plane strain configuration at impact velocities from 168m/s to 529m/s. Two-dimensional (2D) images of sandstone samples, etched in a 1% Buffered Oxide Etchant (BOE), were captured with a Scanning Electron Microscope (SEM), then used to generate three-dimensional (3D) grain size distributions. To better inform design for future pressure-shear experiments, each plane strain test contained multiple sandstone samples of varying thicknesses to compare wave formation for a given shot velocity. The particle velocity induced at the back surface of the sample was measured using Photon Doppler Velocimetry (PDV). The dynamic experiments were simulated utilizing CTH and compared with experimental results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0000937</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2272 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_12_0000937
source AIP Journals Complete
subjects Copper
Electron microscopes
Etchants
Grain size distribution
Impact velocity
Mountains
Plane strain
Sandstone
Thickness
Velocimetry
Wave propagation
title Uniaxial wave propagation through copper mountain sandstone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uniaxial%20wave%20propagation%20through%20copper%20mountain%20sandstone&rft.btitle=AIP%20conference%20proceedings&rft.au=Helminiak,%20Nathaniel%20S.&rft.date=2020-11-02&rft.volume=2272&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0000937&rft_dat=%3Cproquest_scita%3E2457401654%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457401654&rft_id=info:pmid/&rfr_iscdi=true