Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition

Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2023-11, Vol.49 (11), p.1236-1244
Hauptverfasser: Trojanová, Z., Daniš, S., Halmešová, K., Džugan, J., Drozd, Z., Máthis, K., Lukáč, P., Valiev, R. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 11
container_start_page 1236
container_title Low temperature physics (Woodbury, N.Y.)
container_volume 49
creator Trojanová, Z.
Daniš, S.
Halmešová, K.
Džugan, J.
Drozd, Z.
Máthis, K.
Lukáč, P.
Valiev, R. Z.
description Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.
doi_str_mv 10.1063/10.0021367
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_10_0021367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887116628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcXP0HAm1LNnzZpj2NMHQz0oOKtpMmbkdE1NekO26c3dTt7-r0hD8_L-0PolpJHSgR_SkkIo1zIMzShpCKZKKg8H2fBMynl9yW6inFDCE2_1QQdltte6QF7ixfz2Tvug9cQo-vW2HfYuNh6rQY3ztBFN-yx6gyOu2YdlOtwdAfAKRUenFBt_oVV2_p90kCvAhjc7JMkQNoAHYR1ekHvkycZr9GFVW2Em1NO0efz4mP-mq3eXpbz2SrTrCJDBo1WRnDZ0BxM3jDNqazyhpSCFCW3wlaFNaRSBeOlLYwtqAXG0nm5EqU1nE_R3dGbbvvZQRzqjd-FLq2sWVlKSoVgZaLuj5QOPsYAtu6D26qwrympx_bGPHWb4IcjHLUb_ur5j_4F3vp5ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887116628</pqid></control><display><type>article</type><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><source>AIP Journals Complete</source><creator>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</creator><creatorcontrib>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</creatorcontrib><description>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/10.0021367</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Crystal dislocations ; Crystallites ; Deposition ; Dislocation density ; Grain structure ; Lattice parameters ; Martensite ; Residual stress ; Size distribution ; Solid phases ; Titanium base alloys</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2023-11, Vol.49 (11), p.1236-1244</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/10.0021367$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Trojanová, Z.</creatorcontrib><creatorcontrib>Daniš, S.</creatorcontrib><creatorcontrib>Halmešová, K.</creatorcontrib><creatorcontrib>Džugan, J.</creatorcontrib><creatorcontrib>Drozd, Z.</creatorcontrib><creatorcontrib>Máthis, K.</creatorcontrib><creatorcontrib>Lukáč, P.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</description><subject>Anisotropy</subject><subject>Crystal dislocations</subject><subject>Crystallites</subject><subject>Deposition</subject><subject>Dislocation density</subject><subject>Grain structure</subject><subject>Lattice parameters</subject><subject>Martensite</subject><subject>Residual stress</subject><subject>Size distribution</subject><subject>Solid phases</subject><subject>Titanium base alloys</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcXP0HAm1LNnzZpj2NMHQz0oOKtpMmbkdE1NekO26c3dTt7-r0hD8_L-0PolpJHSgR_SkkIo1zIMzShpCKZKKg8H2fBMynl9yW6inFDCE2_1QQdltte6QF7ixfz2Tvug9cQo-vW2HfYuNh6rQY3ztBFN-yx6gyOu2YdlOtwdAfAKRUenFBt_oVV2_p90kCvAhjc7JMkQNoAHYR1ekHvkycZr9GFVW2Em1NO0efz4mP-mq3eXpbz2SrTrCJDBo1WRnDZ0BxM3jDNqazyhpSCFCW3wlaFNaRSBeOlLYwtqAXG0nm5EqU1nE_R3dGbbvvZQRzqjd-FLq2sWVlKSoVgZaLuj5QOPsYAtu6D26qwrympx_bGPHWb4IcjHLUb_ur5j_4F3vp5ng</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Trojanová, Z.</creator><creator>Daniš, S.</creator><creator>Halmešová, K.</creator><creator>Džugan, J.</creator><creator>Drozd, Z.</creator><creator>Máthis, K.</creator><creator>Lukáč, P.</creator><creator>Valiev, R. Z.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202311</creationdate><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><author>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Crystal dislocations</topic><topic>Crystallites</topic><topic>Deposition</topic><topic>Dislocation density</topic><topic>Grain structure</topic><topic>Lattice parameters</topic><topic>Martensite</topic><topic>Residual stress</topic><topic>Size distribution</topic><topic>Solid phases</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trojanová, Z.</creatorcontrib><creatorcontrib>Daniš, S.</creatorcontrib><creatorcontrib>Halmešová, K.</creatorcontrib><creatorcontrib>Džugan, J.</creatorcontrib><creatorcontrib>Drozd, Z.</creatorcontrib><creatorcontrib>Máthis, K.</creatorcontrib><creatorcontrib>Lukáč, P.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trojanová, Z.</au><au>Daniš, S.</au><au>Halmešová, K.</au><au>Džugan, J.</au><au>Drozd, Z.</au><au>Máthis, K.</au><au>Lukáč, P.</au><au>Valiev, R. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>49</volume><issue>11</issue><spage>1236</spage><epage>1244</epage><pages>1236-1244</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/10.0021367</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-777X
ispartof Low temperature physics (Woodbury, N.Y.), 2023-11, Vol.49 (11), p.1236-1244
issn 1063-777X
1090-6517
language eng
recordid cdi_scitation_primary_10_1063_10_0021367
source AIP Journals Complete
subjects Anisotropy
Crystal dislocations
Crystallites
Deposition
Dislocation density
Grain structure
Lattice parameters
Martensite
Residual stress
Size distribution
Solid phases
Titanium base alloys
title Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20ECAP%20processing%20on%20dislocation%20density%20and%20subgrain%20size%20in%20a%20ti6al4V%20alloy%20prepared%20by%20direct%20energy%20deposition&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Trojanov%C3%A1,%20Z.&rft.date=2023-11&rft.volume=49&rft.issue=11&rft.spage=1236&rft.epage=1244&rft.pages=1236-1244&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/10.0021367&rft_dat=%3Cproquest_scita%3E2887116628%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887116628&rft_id=info:pmid/&rfr_iscdi=true