Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition
Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite deco...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2023-11, Vol.49 (11), p.1236-1244 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1244 |
---|---|
container_issue | 11 |
container_start_page | 1236 |
container_title | Low temperature physics (Woodbury, N.Y.) |
container_volume | 49 |
creator | Trojanová, Z. Daniš, S. Halmešová, K. Džugan, J. Drozd, Z. Máthis, K. Lukáč, P. Valiev, R. Z. |
description | Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction. |
doi_str_mv | 10.1063/10.0021367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_10_0021367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887116628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcXP0HAm1LNnzZpj2NMHQz0oOKtpMmbkdE1NekO26c3dTt7-r0hD8_L-0PolpJHSgR_SkkIo1zIMzShpCKZKKg8H2fBMynl9yW6inFDCE2_1QQdltte6QF7ixfz2Tvug9cQo-vW2HfYuNh6rQY3ztBFN-yx6gyOu2YdlOtwdAfAKRUenFBt_oVV2_p90kCvAhjc7JMkQNoAHYR1ekHvkycZr9GFVW2Em1NO0efz4mP-mq3eXpbz2SrTrCJDBo1WRnDZ0BxM3jDNqazyhpSCFCW3wlaFNaRSBeOlLYwtqAXG0nm5EqU1nE_R3dGbbvvZQRzqjd-FLq2sWVlKSoVgZaLuj5QOPsYAtu6D26qwrympx_bGPHWb4IcjHLUb_ur5j_4F3vp5ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887116628</pqid></control><display><type>article</type><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><source>AIP Journals Complete</source><creator>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</creator><creatorcontrib>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</creatorcontrib><description>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/10.0021367</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Crystal dislocations ; Crystallites ; Deposition ; Dislocation density ; Grain structure ; Lattice parameters ; Martensite ; Residual stress ; Size distribution ; Solid phases ; Titanium base alloys</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2023-11, Vol.49 (11), p.1236-1244</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/10.0021367$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Trojanová, Z.</creatorcontrib><creatorcontrib>Daniš, S.</creatorcontrib><creatorcontrib>Halmešová, K.</creatorcontrib><creatorcontrib>Džugan, J.</creatorcontrib><creatorcontrib>Drozd, Z.</creatorcontrib><creatorcontrib>Máthis, K.</creatorcontrib><creatorcontrib>Lukáč, P.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</description><subject>Anisotropy</subject><subject>Crystal dislocations</subject><subject>Crystallites</subject><subject>Deposition</subject><subject>Dislocation density</subject><subject>Grain structure</subject><subject>Lattice parameters</subject><subject>Martensite</subject><subject>Residual stress</subject><subject>Size distribution</subject><subject>Solid phases</subject><subject>Titanium base alloys</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcXP0HAm1LNnzZpj2NMHQz0oOKtpMmbkdE1NekO26c3dTt7-r0hD8_L-0PolpJHSgR_SkkIo1zIMzShpCKZKKg8H2fBMynl9yW6inFDCE2_1QQdltte6QF7ixfz2Tvug9cQo-vW2HfYuNh6rQY3ztBFN-yx6gyOu2YdlOtwdAfAKRUenFBt_oVV2_p90kCvAhjc7JMkQNoAHYR1ekHvkycZr9GFVW2Em1NO0efz4mP-mq3eXpbz2SrTrCJDBo1WRnDZ0BxM3jDNqazyhpSCFCW3wlaFNaRSBeOlLYwtqAXG0nm5EqU1nE_R3dGbbvvZQRzqjd-FLq2sWVlKSoVgZaLuj5QOPsYAtu6D26qwrympx_bGPHWb4IcjHLUb_ur5j_4F3vp5ng</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Trojanová, Z.</creator><creator>Daniš, S.</creator><creator>Halmešová, K.</creator><creator>Džugan, J.</creator><creator>Drozd, Z.</creator><creator>Máthis, K.</creator><creator>Lukáč, P.</creator><creator>Valiev, R. Z.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202311</creationdate><title>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</title><author>Trojanová, Z. ; Daniš, S. ; Halmešová, K. ; Džugan, J. ; Drozd, Z. ; Máthis, K. ; Lukáč, P. ; Valiev, R. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-ebcad637b14ed4b2c31794b0860583f6f95fd09a5238f5df51fe221104a68fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Crystal dislocations</topic><topic>Crystallites</topic><topic>Deposition</topic><topic>Dislocation density</topic><topic>Grain structure</topic><topic>Lattice parameters</topic><topic>Martensite</topic><topic>Residual stress</topic><topic>Size distribution</topic><topic>Solid phases</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trojanová, Z.</creatorcontrib><creatorcontrib>Daniš, S.</creatorcontrib><creatorcontrib>Halmešová, K.</creatorcontrib><creatorcontrib>Džugan, J.</creatorcontrib><creatorcontrib>Drozd, Z.</creatorcontrib><creatorcontrib>Máthis, K.</creatorcontrib><creatorcontrib>Lukáč, P.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trojanová, Z.</au><au>Daniš, S.</au><au>Halmešová, K.</au><au>Džugan, J.</au><au>Drozd, Z.</au><au>Máthis, K.</au><au>Lukáč, P.</au><au>Valiev, R. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>49</volume><issue>11</issue><spage>1236</spage><epage>1244</epage><pages>1236-1244</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>Ti6Al4V alloy billets were additively manufactured by direct energy deposition and then equal channel angularly pressed (ECAPed) at 700 °C. The originally prepared α′ martensite microstructure was completely converted to an equiaxed fine grain structure during ECAP processing. The α′ martensite decomposed into α + β dual phase structure. The dislocation density in the deposited and ECAPed samples was measured by X-ray profile analysis in samples of two orientations. The dislocation density estimated in the deposition plane was found to be higher than that estimated perpendicularly. This difference is probably a consequence of the internal stresses generated in the samples during the deposition process. A similar anisotropy in dislocation density and crystallite size was found in the ECAPed samples. Lattice constants were measured for the α′ martensite and α phase of the ECAPed alloy. The crystallite size distribution was found to be moderately different for samples cut parallel and perpendicular to the extrusion direction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/10.0021367</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-777X |
ispartof | Low temperature physics (Woodbury, N.Y.), 2023-11, Vol.49 (11), p.1236-1244 |
issn | 1063-777X 1090-6517 |
language | eng |
recordid | cdi_scitation_primary_10_1063_10_0021367 |
source | AIP Journals Complete |
subjects | Anisotropy Crystal dislocations Crystallites Deposition Dislocation density Grain structure Lattice parameters Martensite Residual stress Size distribution Solid phases Titanium base alloys |
title | Impact of ECAP processing on dislocation density and subgrain size in a ti6al4V alloy prepared by direct energy deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20ECAP%20processing%20on%20dislocation%20density%20and%20subgrain%20size%20in%20a%20ti6al4V%20alloy%20prepared%20by%20direct%20energy%20deposition&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Trojanov%C3%A1,%20Z.&rft.date=2023-11&rft.volume=49&rft.issue=11&rft.spage=1236&rft.epage=1244&rft.pages=1236-1244&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/10.0021367&rft_dat=%3Cproquest_scita%3E2887116628%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887116628&rft_id=info:pmid/&rfr_iscdi=true |