Detección de anomalías basada en aprendizaje profundo: Revisión

RESUMEN La detección de anomalías es una técnica de Minería de Datos que permite el reconocimiento de nuevos patrones con comportamiento inusual, los cuales pueden ser traducidos como acciones no válidas o anómalas sobre los datos. La detección de anomalías ha permitido la identificación y prevenció...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista cubana de ciencias informáticas 2019-09, p.107-123
Hauptverfasser: López-Avila, Leyanis, Acosta-Mendoza, Niusvel, gago-Alonso, Andrés
Format: Artikel
Sprache:por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RESUMEN La detección de anomalías es una técnica de Minería de Datos que permite el reconocimiento de nuevos patrones con comportamiento inusual, los cuales pueden ser traducidos como acciones no válidas o anómalas sobre los datos. La detección de anomalías ha permitido la identificación y prevención de actividades maliciosas como fraude e intrusiones, entre otros. El uso de técnicas tradicionales para la detección de anomalías ha reportado muy buenos resultados. Sin embargo, en los últimos años se han reportado resultados de mayor relevancia mediante el uso de técnicas de aprendizaje profundo. El objetivo de este reporte es la revisión de los principales y más recientes métodos del estado-del-arte para la detección de anomalías (fraude e intrusiones) basados en aprendizaje profundo (en inglés: Deep Learning), los cuales categorizamos según el tipo de red profunda que utilizan.
ISSN:2227-1899