A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems
Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the weal...
Gespeichert in:
Veröffentlicht in: | South African journal of industrial engineering 2024-08, Vol.35 (2), p.154-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 2 |
container_start_page | 154 |
container_title | South African journal of industrial engineering |
container_volume | 35 |
creator | Naude, A. Van Vuuren, J.H. |
description | Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the wealth of information offered by digitalised manufacturing systems in order to predict errors. Multi-stage manufacturing systems, however, introduce additional complexity owing to the cascade effects associated with stage interactions. A generic modular framework is proposed for facilitating the tasks associated with preparing data emanating from multi-stage manufacturing systems, building predictive models, and interpreting these models’ results. In particular, cascade quality prediction methods are employed to harness the benefit of invoking a stage-wise modelling approach. The working of the framework is demonstrated in a practical case study involving data from a multistage semiconductor production process. |
doi_str_mv | 10.7166/35-2-3008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S2224_78902024000200012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sabinet_id>https://hdl.handle.net/10520/ejc-indeng_v35_n2_a11</sabinet_id><scielo_id>S2224_78902024000200012</scielo_id><sourcerecordid>3120654188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1642-fc1d3c3f4cd93a4a8203665fb2d1d4e142bb19134fe21003a779dd00cbff2bee3</originalsourceid><addsrcrecordid>eNpFkE9rGzEQxUVpoSbJod9gIaceNpFG2n_HENdtwKGHtNDboJVG9jprrStpU_Ltq8WBCMQ7zHtPmh9jXwS_aURd38qqhFJy3n5gKwBQZdN2_CNbCS6ghKb585ldxXjg-XSybjmsmL4rHrXZD56KLengB78rNkEf6d8Ungs3hWKtky7XYXghX6zJkUlZUpZh8sXgi8d5TENMeke5yc9OmzSHpebpNSY6xkv2yekx0tWbXrDfm2-_7n-U25_fH-7vtqURtYLSGWGlkU4Z20mtdAtc1nXlerDCKhIK-l50QipHIDiXumk6azk3vXPQE8kLdnPujWagccLDNAefH8SnBQUuKICDyrtDvgJy4PocOIXp70wxvUekAF5XSrRtdn09u0yYYgzk8BSGow6vKDgu1FFWCLhQz97N2xd0n4kmjJpOc4_7lE4R93bEvfZ2JFxmglfAkQ4GB2_J7_AlF3lALYT8D7PMiro</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120654188</pqid></control><display><type>article</type><title>A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Naude, A. ; Van Vuuren, J.H.</creator><creatorcontrib>Naude, A. ; Van Vuuren, J.H.</creatorcontrib><description>Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the wealth of information offered by digitalised manufacturing systems in order to predict errors. Multi-stage manufacturing systems, however, introduce additional complexity owing to the cascade effects associated with stage interactions. A generic modular framework is proposed for facilitating the tasks associated with preparing data emanating from multi-stage manufacturing systems, building predictive models, and interpreting these models’ results. In particular, cascade quality prediction methods are employed to harness the benefit of invoking a stage-wise modelling approach. The working of the framework is demonstrated in a practical case study involving data from a multistage semiconductor production process.</description><identifier>ISSN: 1012-277X</identifier><identifier>ISSN: 2224-7890</identifier><identifier>EISSN: 2224-7890</identifier><identifier>DOI: 10.7166/35-2-3008</identifier><language>eng</language><publisher>Bedfordview: South African Institute of Industrial Engineers (SAIIE)</publisher><subject>Artificial intelligence ; Case studies ; Defective products ; Defects ; Engineering, Industrial ; Machine learning ; Manufacturers ; Manufacturing ; Modular systems ; Prediction models ; Predictions ; Product quality ; Production costs ; Quality management ; Stadiums ; Task complexity</subject><ispartof>South African journal of industrial engineering, 2024-08, Vol.35 (2), p.154-170</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Naude, A.</creatorcontrib><creatorcontrib>Van Vuuren, J.H.</creatorcontrib><title>A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems</title><title>South African journal of industrial engineering</title><addtitle>S. Afr. J. Ind. Eng</addtitle><description>Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the wealth of information offered by digitalised manufacturing systems in order to predict errors. Multi-stage manufacturing systems, however, introduce additional complexity owing to the cascade effects associated with stage interactions. A generic modular framework is proposed for facilitating the tasks associated with preparing data emanating from multi-stage manufacturing systems, building predictive models, and interpreting these models’ results. In particular, cascade quality prediction methods are employed to harness the benefit of invoking a stage-wise modelling approach. The working of the framework is demonstrated in a practical case study involving data from a multistage semiconductor production process.</description><subject>Artificial intelligence</subject><subject>Case studies</subject><subject>Defective products</subject><subject>Defects</subject><subject>Engineering, Industrial</subject><subject>Machine learning</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Modular systems</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Product quality</subject><subject>Production costs</subject><subject>Quality management</subject><subject>Stadiums</subject><subject>Task complexity</subject><issn>1012-277X</issn><issn>2224-7890</issn><issn>2224-7890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkE9rGzEQxUVpoSbJod9gIaceNpFG2n_HENdtwKGHtNDboJVG9jprrStpU_Ltq8WBCMQ7zHtPmh9jXwS_aURd38qqhFJy3n5gKwBQZdN2_CNbCS6ghKb585ldxXjg-XSybjmsmL4rHrXZD56KLengB78rNkEf6d8Ungs3hWKtky7XYXghX6zJkUlZUpZh8sXgi8d5TENMeke5yc9OmzSHpebpNSY6xkv2yekx0tWbXrDfm2-_7n-U25_fH-7vtqURtYLSGWGlkU4Z20mtdAtc1nXlerDCKhIK-l50QipHIDiXumk6azk3vXPQE8kLdnPujWagccLDNAefH8SnBQUuKICDyrtDvgJy4PocOIXp70wxvUekAF5XSrRtdn09u0yYYgzk8BSGow6vKDgu1FFWCLhQz97N2xd0n4kmjJpOc4_7lE4R93bEvfZ2JFxmglfAkQ4GB2_J7_AlF3lALYT8D7PMiro</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Naude, A.</creator><creator>Van Vuuren, J.H.</creator><general>South African Institute of Industrial Engineers (SAIIE)</general><general>South African Institute for Industrial Engineering</general><general>The Southern African Institute for Industrial Engineering</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>GPN</scope></search><sort><creationdate>20240801</creationdate><title>A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems</title><author>Naude, A. ; Van Vuuren, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1642-fc1d3c3f4cd93a4a8203665fb2d1d4e142bb19134fe21003a779dd00cbff2bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Case studies</topic><topic>Defective products</topic><topic>Defects</topic><topic>Engineering, Industrial</topic><topic>Machine learning</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Modular systems</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Product quality</topic><topic>Production costs</topic><topic>Quality management</topic><topic>Stadiums</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naude, A.</creatorcontrib><creatorcontrib>Van Vuuren, J.H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>South African journal of industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naude, A.</au><au>Van Vuuren, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems</atitle><jtitle>South African journal of industrial engineering</jtitle><addtitle>S. Afr. J. Ind. Eng</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>2</issue><spage>154</spage><epage>170</epage><pages>154-170</pages><issn>1012-277X</issn><issn>2224-7890</issn><eissn>2224-7890</eissn><abstract>Economic transformation and escalating market competitiveness have prompted manufacturers to adopt zero-defect manufacturing principles to lower production costs and maximise product quality. The key enabler of zero-defect manufacturing is the adoption of data-driven techniques that harness the wealth of information offered by digitalised manufacturing systems in order to predict errors. Multi-stage manufacturing systems, however, introduce additional complexity owing to the cascade effects associated with stage interactions. A generic modular framework is proposed for facilitating the tasks associated with preparing data emanating from multi-stage manufacturing systems, building predictive models, and interpreting these models’ results. In particular, cascade quality prediction methods are employed to harness the benefit of invoking a stage-wise modelling approach. The working of the framework is demonstrated in a practical case study involving data from a multistage semiconductor production process.</abstract><cop>Bedfordview</cop><pub>South African Institute of Industrial Engineers (SAIIE)</pub><doi>10.7166/35-2-3008</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-277X |
ispartof | South African journal of industrial engineering, 2024-08, Vol.35 (2), p.154-170 |
issn | 1012-277X 2224-7890 2224-7890 |
language | eng |
recordid | cdi_scielo_journals_S2224_78902024000200012 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial intelligence Case studies Defective products Defects Engineering, Industrial Machine learning Manufacturers Manufacturing Modular systems Prediction models Predictions Product quality Production costs Quality management Stadiums Task complexity |
title | A Machine Learning Framework for Data-Driven Defect Detection in Multistage Manufacturing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Framework%20for%20Data-Driven%20Defect%20Detection%20in%20Multistage%20Manufacturing%20Systems&rft.jtitle=South%20African%20journal%20of%20industrial%20engineering&rft.au=Naude,%20A.&rft.date=2024-08-01&rft.volume=35&rft.issue=2&rft.spage=154&rft.epage=170&rft.pages=154-170&rft.issn=1012-277X&rft.eissn=2224-7890&rft_id=info:doi/10.7166/35-2-3008&rft_dat=%3Cproquest_sciel%3E3120654188%3C/proquest_sciel%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120654188&rft_id=info:pmid/&rft_sabinet_id=https://hdl.handle.net/10520/ejc-indeng_v35_n2_a11&rft_scielo_id=S2224_78902024000200012&rfr_iscdi=true |