Row-col method associated with frequentist and Bayesian statistics in a passion fruit population
This study was conducted to test the significance of adding row and column factors in the frequentist and Bayesian models used in the evaluation of a population of Passiflora edulis, as well as selecting promising genotypes to form the next generation. The following parameters were evaluated: number...
Gespeichert in:
Veröffentlicht in: | Crop breeding and applied biotechnology 2023, Vol.23 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Crop breeding and applied biotechnology |
container_volume | 23 |
creator | Souza, André Oliveira Viana, Alexandre Pio Silva, Fabyano Fonseca e Azevedo, Camila Ferreira Cavalcante, Natan Ramos Silva, Flavia Alves |
description | This study was conducted to test the significance of adding row and column factors in the frequentist and Bayesian models used in the evaluation of a population of Passiflora edulis, as well as selecting promising genotypes to form the next generation. The following parameters were evaluated: number of fruits, yield, fruit weight, transverse fruit diameter, longitudinal fruit diameter, pulp percentage, skin thickness and total soluble solids. For the Bayesian model, two priors were considered, namely, inverse gamma and a priori distribution with extended parameters. The model with a priori distribution with extended parameters showed lower root mean square error and higher correlation coefficient between observed and predicted values than the inverse gamma model. Furthermore, for a selection intensity of 37%, the mixed and Bayesian models selected practically the same progenies in both experiments. The use of the 5-fold cross-validation technique indicated that both tested models were efficient. |
doi_str_mv | 10.1590/1984-70332023v23n3a34 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1984_70332023000300206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1984_70332023000300206</scielo_id><sourcerecordid>2901900445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-7be4507b25048816b946cd36d0bcdde5f6f5f61017ebff31b5604f33419f50833</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMoOKc_QQh43XnSJG1zqcMvGAh-XNc0TVhGl9QmdezfmzGneHE4h8P7nJAHoUsCM8IFXBNRsawESnPI6VdOHZWUHaHJ7_44zZxUWVlxeorOQlgBMF4IMUEfL36TKd_htY5L32IZgldWRt3ijY1LbAb9OWoXbYhYuhbfyq0OVjocotwtrQrYOixxn0jrXQJGG3Hv-7FLAe_O0YmRXdAXP32K3u_v3uaP2eL54Wl-s8gUJTxmZaMZh7LJObCqIkUjWKFaWrTQqLbV3BQmFQFS6sYYShpeADOUMiIMh4rSKZrt7wZldefrlR8Hlx6sX3ca6oMeAEiVQ5GAqz3QDz59McQ_JBdARFLEeErxfUoNPoRBm7of7FoO25pAvbNf_zt_sE-_AZ8ndrU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901900445</pqid></control><display><type>article</type><title>Row-col method associated with frequentist and Bayesian statistics in a passion fruit population</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Souza, André Oliveira ; Viana, Alexandre Pio ; Silva, Fabyano Fonseca e ; Azevedo, Camila Ferreira ; Cavalcante, Natan Ramos ; Silva, Flavia Alves</creator><creatorcontrib>Souza, André Oliveira ; Viana, Alexandre Pio ; Silva, Fabyano Fonseca e ; Azevedo, Camila Ferreira ; Cavalcante, Natan Ramos ; Silva, Flavia Alves</creatorcontrib><description>This study was conducted to test the significance of adding row and column factors in the frequentist and Bayesian models used in the evaluation of a population of Passiflora edulis, as well as selecting promising genotypes to form the next generation. The following parameters were evaluated: number of fruits, yield, fruit weight, transverse fruit diameter, longitudinal fruit diameter, pulp percentage, skin thickness and total soluble solids. For the Bayesian model, two priors were considered, namely, inverse gamma and a priori distribution with extended parameters. The model with a priori distribution with extended parameters showed lower root mean square error and higher correlation coefficient between observed and predicted values than the inverse gamma model. Furthermore, for a selection intensity of 37%, the mixed and Bayesian models selected practically the same progenies in both experiments. The use of the 5-fold cross-validation technique indicated that both tested models were efficient.</description><identifier>ISSN: 1518-7853</identifier><identifier>ISSN: 1984-7033</identifier><identifier>EISSN: 1984-7033</identifier><identifier>DOI: 10.1590/1984-70332023v23n3a34</identifier><language>eng</language><publisher>Vicosa: Crop Breeding and Applied Biotechnology</publisher><subject>AGRONOMY ; Bayesian analysis ; BIOTECHNOLOGY & APPLIED MICROBIOLOGY ; Correlation coefficient ; Correlation coefficients ; Diameters ; Fruits ; Genotypes ; Mathematical models ; Parameters ; Passion fruit ; Population (statistical) ; Population studies</subject><ispartof>Crop breeding and applied biotechnology, 2023, Vol.23 (3)</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-7be4507b25048816b946cd36d0bcdde5f6f5f61017ebff31b5604f33419f50833</cites><orcidid>0000-0001-7818-707X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Souza, André Oliveira</creatorcontrib><creatorcontrib>Viana, Alexandre Pio</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Cavalcante, Natan Ramos</creatorcontrib><creatorcontrib>Silva, Flavia Alves</creatorcontrib><title>Row-col method associated with frequentist and Bayesian statistics in a passion fruit population</title><title>Crop breeding and applied biotechnology</title><addtitle>Crop Breed. Appl. Biotechnol</addtitle><description>This study was conducted to test the significance of adding row and column factors in the frequentist and Bayesian models used in the evaluation of a population of Passiflora edulis, as well as selecting promising genotypes to form the next generation. The following parameters were evaluated: number of fruits, yield, fruit weight, transverse fruit diameter, longitudinal fruit diameter, pulp percentage, skin thickness and total soluble solids. For the Bayesian model, two priors were considered, namely, inverse gamma and a priori distribution with extended parameters. The model with a priori distribution with extended parameters showed lower root mean square error and higher correlation coefficient between observed and predicted values than the inverse gamma model. Furthermore, for a selection intensity of 37%, the mixed and Bayesian models selected practically the same progenies in both experiments. The use of the 5-fold cross-validation technique indicated that both tested models were efficient.</description><subject>AGRONOMY</subject><subject>Bayesian analysis</subject><subject>BIOTECHNOLOGY & APPLIED MICROBIOLOGY</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diameters</subject><subject>Fruits</subject><subject>Genotypes</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Passion fruit</subject><subject>Population (statistical)</subject><subject>Population studies</subject><issn>1518-7853</issn><issn>1984-7033</issn><issn>1984-7033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkF1LwzAUhoMoOKc_QQh43XnSJG1zqcMvGAh-XNc0TVhGl9QmdezfmzGneHE4h8P7nJAHoUsCM8IFXBNRsawESnPI6VdOHZWUHaHJ7_44zZxUWVlxeorOQlgBMF4IMUEfL36TKd_htY5L32IZgldWRt3ijY1LbAb9OWoXbYhYuhbfyq0OVjocotwtrQrYOixxn0jrXQJGG3Hv-7FLAe_O0YmRXdAXP32K3u_v3uaP2eL54Wl-s8gUJTxmZaMZh7LJObCqIkUjWKFaWrTQqLbV3BQmFQFS6sYYShpeADOUMiIMh4rSKZrt7wZldefrlR8Hlx6sX3ca6oMeAEiVQ5GAqz3QDz59McQ_JBdARFLEeErxfUoNPoRBm7of7FoO25pAvbNf_zt_sE-_AZ8ndrU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Souza, André Oliveira</creator><creator>Viana, Alexandre Pio</creator><creator>Silva, Fabyano Fonseca e</creator><creator>Azevedo, Camila Ferreira</creator><creator>Cavalcante, Natan Ramos</creator><creator>Silva, Flavia Alves</creator><general>Crop Breeding and Applied Biotechnology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0001-7818-707X</orcidid></search><sort><creationdate>2023</creationdate><title>Row-col method associated with frequentist and Bayesian statistics in a passion fruit population</title><author>Souza, André Oliveira ; Viana, Alexandre Pio ; Silva, Fabyano Fonseca e ; Azevedo, Camila Ferreira ; Cavalcante, Natan Ramos ; Silva, Flavia Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-7be4507b25048816b946cd36d0bcdde5f6f5f61017ebff31b5604f33419f50833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AGRONOMY</topic><topic>Bayesian analysis</topic><topic>BIOTECHNOLOGY & APPLIED MICROBIOLOGY</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diameters</topic><topic>Fruits</topic><topic>Genotypes</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Passion fruit</topic><topic>Population (statistical)</topic><topic>Population studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, André Oliveira</creatorcontrib><creatorcontrib>Viana, Alexandre Pio</creatorcontrib><creatorcontrib>Silva, Fabyano Fonseca e</creatorcontrib><creatorcontrib>Azevedo, Camila Ferreira</creatorcontrib><creatorcontrib>Cavalcante, Natan Ramos</creatorcontrib><creatorcontrib>Silva, Flavia Alves</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>SciELO</collection><jtitle>Crop breeding and applied biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, André Oliveira</au><au>Viana, Alexandre Pio</au><au>Silva, Fabyano Fonseca e</au><au>Azevedo, Camila Ferreira</au><au>Cavalcante, Natan Ramos</au><au>Silva, Flavia Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Row-col method associated with frequentist and Bayesian statistics in a passion fruit population</atitle><jtitle>Crop breeding and applied biotechnology</jtitle><addtitle>Crop Breed. Appl. Biotechnol</addtitle><date>2023</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><issn>1518-7853</issn><issn>1984-7033</issn><eissn>1984-7033</eissn><abstract>This study was conducted to test the significance of adding row and column factors in the frequentist and Bayesian models used in the evaluation of a population of Passiflora edulis, as well as selecting promising genotypes to form the next generation. The following parameters were evaluated: number of fruits, yield, fruit weight, transverse fruit diameter, longitudinal fruit diameter, pulp percentage, skin thickness and total soluble solids. For the Bayesian model, two priors were considered, namely, inverse gamma and a priori distribution with extended parameters. The model with a priori distribution with extended parameters showed lower root mean square error and higher correlation coefficient between observed and predicted values than the inverse gamma model. Furthermore, for a selection intensity of 37%, the mixed and Bayesian models selected practically the same progenies in both experiments. The use of the 5-fold cross-validation technique indicated that both tested models were efficient.</abstract><cop>Vicosa</cop><pub>Crop Breeding and Applied Biotechnology</pub><doi>10.1590/1984-70332023v23n3a34</doi><orcidid>https://orcid.org/0000-0001-7818-707X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1518-7853 |
ispartof | Crop breeding and applied biotechnology, 2023, Vol.23 (3) |
issn | 1518-7853 1984-7033 1984-7033 |
language | eng |
recordid | cdi_scielo_journals_S1984_70332023000300206 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | AGRONOMY Bayesian analysis BIOTECHNOLOGY & APPLIED MICROBIOLOGY Correlation coefficient Correlation coefficients Diameters Fruits Genotypes Mathematical models Parameters Passion fruit Population (statistical) Population studies |
title | Row-col method associated with frequentist and Bayesian statistics in a passion fruit population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Row-col%20method%20associated%20with%20frequentist%20and%20Bayesian%20statistics%20in%20a%20passion%20fruit%20population&rft.jtitle=Crop%20breeding%20and%20applied%20biotechnology&rft.au=Souza,%20Andr%C3%A9%20Oliveira&rft.date=2023&rft.volume=23&rft.issue=3&rft.issn=1518-7853&rft.eissn=1984-7033&rft_id=info:doi/10.1590/1984-70332023v23n3a34&rft_dat=%3Cproquest_sciel%3E2901900445%3C/proquest_sciel%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901900445&rft_id=info:pmid/&rft_scielo_id=S1984_70332023000300206&rfr_iscdi=true |