Modelos regionais de relação hipsométrica avaliados para plantio clonal de eucalipto em área de Cerrado
Uma alternativa para reduzir o tempo despendido com a medição da altura das árvores é o emprego de equações, geralmente, geradas a partir do ajuste de modelos hipsométricos locais, os quais exigem o ajuste de equações conforme o número de unidades amostrais e, ou, estratos que caracterizam a populaç...
Gespeichert in:
Veröffentlicht in: | Ciência florestal 2023-06, Vol.33 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uma alternativa para reduzir o tempo despendido com a medição da altura das árvores é o emprego de equações, geralmente, geradas a partir do ajuste de modelos hipsométricos locais, os quais exigem o ajuste de equações conforme o número de unidades amostrais e, ou, estratos que caracterizam a população inventariada. Por isso, este trabalho tem o objetivo de avaliar modelos hipsométricos regionais ajustados aos dados de eucalipto clonal. Foram avaliados um total de 26 modelos regionais de efeito fixo (EF), adotando-se os seguintes critérios estatísticos: inexistência de multicolinearidade, significância na estimativa dos coeficientes de regressão, atendimento às pressuposições de regressão, análise gráfica de resíduos e teste validação com dados independentes, adotando-se a média dos quadrados dos resíduos de predição, a soma dos quadrados dos resíduos de predição relativos, o intervalo interquartil entre o 1º e 3º quartis e correlação linear múltipla. Após identificar o modelo de EF que mais se sobressaiu dentre os demais, procedeu-se o seu ajuste na forma de modelo de efeito misto (EM), ao incluir o efeito aleatório da unidade amostral. Neste caso, para comparar com o respectivo modelo de EF, além dos critérios anteriores, adotaram-se: critério de informação de Akaike, critério de informação Bayesiano e teste da razão da máxima verossimilhança. Concluiu-se a necessidade inexorável de considerar o ajuste de modelos com EM, por este se destacar sobremaneira ao respectivo modelo com EF. |
---|---|
ISSN: | 0103-9954 1980-5098 1980-5098 |
DOI: | 10.5902/1980509867995 |