Modelos regionais de relação hipsométrica avaliados para plantio clonal de eucalipto em área de Cerrado

Uma alternativa para reduzir o tempo despendido com a medição da altura das árvores é o emprego de equações, geralmente, geradas a partir do ajuste de modelos hipsométricos locais, os quais exigem o ajuste de equações conforme o número de unidades amostrais e, ou, estratos que caracterizam a populaç...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ciência florestal 2023-06, Vol.33 (2)
Hauptverfasser: Andrade, Valdir Carlos Lima de, Schmitt, Thaís, Carvalho, Samuel de Pádua Chaves e, Binotti, Daniel Henrique Breda, Calegario, Natalino
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uma alternativa para reduzir o tempo despendido com a medição da altura das árvores é o emprego de equações, geralmente, geradas a partir do ajuste de modelos hipsométricos locais, os quais exigem o ajuste de equações conforme o número de unidades amostrais e, ou, estratos que caracterizam a população inventariada. Por isso, este trabalho tem o objetivo de avaliar modelos hipsométricos regionais ajustados aos dados de eucalipto clonal. Foram avaliados um total de 26 modelos regionais de efeito fixo (EF), adotando-se os seguintes critérios estatísticos: inexistência de multicolinearidade, significância na estimativa dos coeficientes de regressão, atendimento às pressuposições de regressão, análise gráfica de resíduos e teste validação com dados independentes, adotando-se a média dos quadrados dos resíduos de predição, a soma dos quadrados dos resíduos de predição relativos, o intervalo interquartil entre o 1º e 3º quartis e correlação linear múltipla. Após identificar o modelo de EF que mais se sobressaiu dentre os demais, procedeu-se o seu ajuste na forma de modelo de efeito misto (EM), ao incluir o efeito aleatório da unidade amostral. Neste caso, para comparar com o respectivo modelo de EF, além dos critérios anteriores, adotaram-se: critério de informação de Akaike, critério de informação Bayesiano e teste da razão da máxima verossimilhança. Concluiu-se a necessidade inexorável de considerar o ajuste de modelos com EM, por este se destacar sobremaneira ao respectivo modelo com EF.
ISSN:0103-9954
1980-5098
1980-5098
DOI:10.5902/1980509867995