Computerized analysis of snoring in Sleep Apnea Syndrome

The International Classification of Sleep Disorders lists 90 disorders. Manifestations, such as snoring, are important signs in the diagnosis of the Obstructive Sleep Apnea Syndrome; they are also socially undesirable. The aim of this paper was to present and evaluate a computerized tool that automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of otorhinolaryngology 2011-07, Vol.77 (4), p.488-498
Hauptverfasser: Shiomi, Fabio Koiti, Pisa, Ivan Torres, de Campos, Carlos José Reis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 4
container_start_page 488
container_title Brazilian journal of otorhinolaryngology
container_volume 77
creator Shiomi, Fabio Koiti
Pisa, Ivan Torres
de Campos, Carlos José Reis
description The International Classification of Sleep Disorders lists 90 disorders. Manifestations, such as snoring, are important signs in the diagnosis of the Obstructive Sleep Apnea Syndrome; they are also socially undesirable. The aim of this paper was to present and evaluate a computerized tool that automatically identifies snoring and highlights the importance of establishing the duration of each snoring event in OSA patients. The low-sampling (200 Hz) electrical signal that indicates snoring was measured during polysomnography. The snoring sound of 31 patients was automatically classified by the software. The Kappa approach was applied to measure agreement between the automatic detection software and a trained observer. Student's T test was applied to evaluate differences in the duration of snoring episodes among simple snorers and OSA snorers. Of a total 43,976 snoring episodes, the software sensitivity was 99.26%, the specificity was 97.35%, and Kappa was 0.96. We found a statistically significant difference (p
doi_str_mv 10.1590/S1808-86942011000400013
format Article
fullrecord <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1808_86942011000400013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1808_86942011000400013</scielo_id><els_id>S1808869415306832</els_id><sourcerecordid>885055473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-603b546ef5800490108c2f62861c00f5be7c591c55b9735ab5b1ffddb3891fb73</originalsourceid><addsrcrecordid>eNqFUVtr2zAUFqNlvWx_YfNbn5IdxdbtZRBCtxYKfUj7LGT5qFOxJU-yC-mvr9NkYWWwPggJznfTdwj5SmFOmYJvaypBziRX1QIoBYBqOrT8QE73A8mPDm9VnZCznB8BuADBPpKTBZUclOCnRK5i148DJv-MTWGCaTfZ5yK6IoeYfHgofCjWLWJfLPuAplhvQpNih5_IsTNtxs_7-5zc_7i8W13Nbm5_Xq-WNzPLaDnMOJQ1qzg6JqeQCihIu3B8ITm1AI7VKCxT1DJWK1EyU7OaOtc0dSkVdbUoz8l8p5utxzbqxzimKWXWrxXofyqYCN93hH6sO2wshiGZVvfJdyZtdDRev50E_0s_xCetKgZCVZPAxV4gxd8j5kF3PltsWxMwjllLyYCxSmytxA5pU8w5oTu4UNDbPf0n5Je_Qx54fxYzAZY7AE7dPnlMevv_YLHxCe2gm-jfNXkB8dSfdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885055473</pqid></control><display><type>article</type><title>Computerized analysis of snoring in Sleep Apnea Syndrome</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shiomi, Fabio Koiti ; Pisa, Ivan Torres ; de Campos, Carlos José Reis</creator><creatorcontrib>Shiomi, Fabio Koiti ; Pisa, Ivan Torres ; de Campos, Carlos José Reis</creatorcontrib><description>The International Classification of Sleep Disorders lists 90 disorders. Manifestations, such as snoring, are important signs in the diagnosis of the Obstructive Sleep Apnea Syndrome; they are also socially undesirable. The aim of this paper was to present and evaluate a computerized tool that automatically identifies snoring and highlights the importance of establishing the duration of each snoring event in OSA patients. The low-sampling (200 Hz) electrical signal that indicates snoring was measured during polysomnography. The snoring sound of 31 patients was automatically classified by the software. The Kappa approach was applied to measure agreement between the automatic detection software and a trained observer. Student's T test was applied to evaluate differences in the duration of snoring episodes among simple snorers and OSA snorers. Of a total 43,976 snoring episodes, the software sensitivity was 99.26%, the specificity was 97.35%, and Kappa was 0.96. We found a statistically significant difference (p &lt;0.0001) in the duration of snoring episodes (simple snoring x OSA snorers). This computer software makes it easier to generate quantitative reports of snoring, thereby reducing manual labor.</description><identifier>ISSN: 1808-8694</identifier><identifier>ISSN: 1808-8686</identifier><identifier>EISSN: 1808-8686</identifier><identifier>DOI: 10.1590/S1808-86942011000400013</identifier><identifier>PMID: 21860976</identifier><language>eng</language><publisher>Brazil: Elsevier Editora Ltda</publisher><subject>Adolescent ; Adult ; Algorithms ; apnea ; Child ; Child, Preschool ; decision support techniques ; Female ; Humans ; information systems ; Male ; Middle Aged ; Observer Variation ; Original ; OTORHINOLARYNGOLOGY ; Polysomnography - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted ; sleep apnea syndromes ; Sleep Apnea Syndromes - complications ; Sleep Apnea Syndromes - diagnosis ; snoring ; Snoring - diagnosis ; Snoring - etiology ; Young Adult</subject><ispartof>Brazilian journal of otorhinolaryngology, 2011-07, Vol.77 (4), p.488-498</ispartof><rights>2011 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial</rights><rights>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-603b546ef5800490108c2f62861c00f5be7c591c55b9735ab5b1ffddb3891fb73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450794/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21860976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiomi, Fabio Koiti</creatorcontrib><creatorcontrib>Pisa, Ivan Torres</creatorcontrib><creatorcontrib>de Campos, Carlos José Reis</creatorcontrib><title>Computerized analysis of snoring in Sleep Apnea Syndrome</title><title>Brazilian journal of otorhinolaryngology</title><addtitle>Braz J Otorhinolaryngol</addtitle><description>The International Classification of Sleep Disorders lists 90 disorders. Manifestations, such as snoring, are important signs in the diagnosis of the Obstructive Sleep Apnea Syndrome; they are also socially undesirable. The aim of this paper was to present and evaluate a computerized tool that automatically identifies snoring and highlights the importance of establishing the duration of each snoring event in OSA patients. The low-sampling (200 Hz) electrical signal that indicates snoring was measured during polysomnography. The snoring sound of 31 patients was automatically classified by the software. The Kappa approach was applied to measure agreement between the automatic detection software and a trained observer. Student's T test was applied to evaluate differences in the duration of snoring episodes among simple snorers and OSA snorers. Of a total 43,976 snoring episodes, the software sensitivity was 99.26%, the specificity was 97.35%, and Kappa was 0.96. We found a statistically significant difference (p &lt;0.0001) in the duration of snoring episodes (simple snoring x OSA snorers). This computer software makes it easier to generate quantitative reports of snoring, thereby reducing manual labor.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>apnea</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>decision support techniques</subject><subject>Female</subject><subject>Humans</subject><subject>information systems</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Observer Variation</subject><subject>Original</subject><subject>OTORHINOLARYNGOLOGY</subject><subject>Polysomnography - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>sleep apnea syndromes</subject><subject>Sleep Apnea Syndromes - complications</subject><subject>Sleep Apnea Syndromes - diagnosis</subject><subject>snoring</subject><subject>Snoring - diagnosis</subject><subject>Snoring - etiology</subject><subject>Young Adult</subject><issn>1808-8694</issn><issn>1808-8686</issn><issn>1808-8686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUVtr2zAUFqNlvWx_YfNbn5IdxdbtZRBCtxYKfUj7LGT5qFOxJU-yC-mvr9NkYWWwPggJznfTdwj5SmFOmYJvaypBziRX1QIoBYBqOrT8QE73A8mPDm9VnZCznB8BuADBPpKTBZUclOCnRK5i148DJv-MTWGCaTfZ5yK6IoeYfHgofCjWLWJfLPuAplhvQpNih5_IsTNtxs_7-5zc_7i8W13Nbm5_Xq-WNzPLaDnMOJQ1qzg6JqeQCihIu3B8ITm1AI7VKCxT1DJWK1EyU7OaOtc0dSkVdbUoz8l8p5utxzbqxzimKWXWrxXofyqYCN93hH6sO2wshiGZVvfJdyZtdDRev50E_0s_xCetKgZCVZPAxV4gxd8j5kF3PltsWxMwjllLyYCxSmytxA5pU8w5oTu4UNDbPf0n5Je_Qx54fxYzAZY7AE7dPnlMevv_YLHxCe2gm-jfNXkB8dSfdg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Shiomi, Fabio Koiti</creator><creator>Pisa, Ivan Torres</creator><creator>de Campos, Carlos José Reis</creator><general>Elsevier Editora Ltda</general><general>Elsevier</general><general>Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>GPN</scope></search><sort><creationdate>20110701</creationdate><title>Computerized analysis of snoring in Sleep Apnea Syndrome</title><author>Shiomi, Fabio Koiti ; Pisa, Ivan Torres ; de Campos, Carlos José Reis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-603b546ef5800490108c2f62861c00f5be7c591c55b9735ab5b1ffddb3891fb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>apnea</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>decision support techniques</topic><topic>Female</topic><topic>Humans</topic><topic>information systems</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Observer Variation</topic><topic>Original</topic><topic>OTORHINOLARYNGOLOGY</topic><topic>Polysomnography - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>sleep apnea syndromes</topic><topic>Sleep Apnea Syndromes - complications</topic><topic>Sleep Apnea Syndromes - diagnosis</topic><topic>snoring</topic><topic>Snoring - diagnosis</topic><topic>Snoring - etiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiomi, Fabio Koiti</creatorcontrib><creatorcontrib>Pisa, Ivan Torres</creatorcontrib><creatorcontrib>de Campos, Carlos José Reis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SciELO</collection><jtitle>Brazilian journal of otorhinolaryngology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiomi, Fabio Koiti</au><au>Pisa, Ivan Torres</au><au>de Campos, Carlos José Reis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computerized analysis of snoring in Sleep Apnea Syndrome</atitle><jtitle>Brazilian journal of otorhinolaryngology</jtitle><addtitle>Braz J Otorhinolaryngol</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>77</volume><issue>4</issue><spage>488</spage><epage>498</epage><pages>488-498</pages><issn>1808-8694</issn><issn>1808-8686</issn><eissn>1808-8686</eissn><abstract>The International Classification of Sleep Disorders lists 90 disorders. Manifestations, such as snoring, are important signs in the diagnosis of the Obstructive Sleep Apnea Syndrome; they are also socially undesirable. The aim of this paper was to present and evaluate a computerized tool that automatically identifies snoring and highlights the importance of establishing the duration of each snoring event in OSA patients. The low-sampling (200 Hz) electrical signal that indicates snoring was measured during polysomnography. The snoring sound of 31 patients was automatically classified by the software. The Kappa approach was applied to measure agreement between the automatic detection software and a trained observer. Student's T test was applied to evaluate differences in the duration of snoring episodes among simple snorers and OSA snorers. Of a total 43,976 snoring episodes, the software sensitivity was 99.26%, the specificity was 97.35%, and Kappa was 0.96. We found a statistically significant difference (p &lt;0.0001) in the duration of snoring episodes (simple snoring x OSA snorers). This computer software makes it easier to generate quantitative reports of snoring, thereby reducing manual labor.</abstract><cop>Brazil</cop><pub>Elsevier Editora Ltda</pub><pmid>21860976</pmid><doi>10.1590/S1808-86942011000400013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1808-8694
ispartof Brazilian journal of otorhinolaryngology, 2011-07, Vol.77 (4), p.488-498
issn 1808-8694
1808-8686
1808-8686
language eng
recordid cdi_scielo_journals_S1808_86942011000400013
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Alma/SFX Local Collection
subjects Adolescent
Adult
Algorithms
apnea
Child
Child, Preschool
decision support techniques
Female
Humans
information systems
Male
Middle Aged
Observer Variation
Original
OTORHINOLARYNGOLOGY
Polysomnography - methods
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
sleep apnea syndromes
Sleep Apnea Syndromes - complications
Sleep Apnea Syndromes - diagnosis
snoring
Snoring - diagnosis
Snoring - etiology
Young Adult
title Computerized analysis of snoring in Sleep Apnea Syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computerized%20analysis%20of%20snoring%20in%20Sleep%20Apnea%20Syndrome&rft.jtitle=Brazilian%20journal%20of%20otorhinolaryngology&rft.au=Shiomi,%20Fabio%20Koiti&rft.date=2011-07-01&rft.volume=77&rft.issue=4&rft.spage=488&rft.epage=498&rft.pages=488-498&rft.issn=1808-8694&rft.eissn=1808-8686&rft_id=info:doi/10.1590/S1808-86942011000400013&rft_dat=%3Cproquest_sciel%3E885055473%3C/proquest_sciel%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885055473&rft_id=info:pmid/21860976&rft_scielo_id=S1808_86942011000400013&rft_els_id=S1808869415306832&rfr_iscdi=true