A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion

Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth sciences research journal 2022-09, Vol.26 (3), p.255-262
1. Verfasser: Liu, Xuemei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 3
container_start_page 255
container_title Earth sciences research journal
container_volume 26
creator Liu, Xuemei
description Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.
doi_str_mv 10.15446/esrj.v26n3.103605
format Article
fullrecord <record><control><sourceid>gale_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1794_61902022000300255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730669191</galeid><scielo_id>S1794_61902022000300255</scielo_id><sourcerecordid>A730669191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</originalsourceid><addsrcrecordid>eNpVkU9rHDEMxYfSQLdJvkBOhp5nK_-Pj0tom9JADm3OxuuRJ15m7NT2FPrtO5stJEEHIfF-T6DXdVcUtlQKoT5jLYftH6YS31LgCuS7bsM4Nz0X0rzvNlQb0Stq4EP3sdYDgNSMyU132JEBG_oWcyIztsc8kBzIUvYukSUNWMaS105GzFMeo3cTcSnPbopYSUykPSJ5SLHhQH7ENA55JntX12n1C-jaUpCEpa72F91ZcFPFy__9vHv4-uXXzW1_d__t-83urvdMsdaza8O05p56HpSgXtEAzKgAKDx4YEIYkGaQw7Xgmu2Fc8roIJh3IWimOT_vtiff6iNO2R7yUtJ60P48PsEen8CAMQDgAEzKFfh0Ap5K_r1gbS8IB2OEXoWvVKOb0MYUcivOz7F6u9MclDLU0Jfjb1RrDThHnxOGuO7fAOwE-JJrLRjsU4mzK38tBfucrT1ma5-ztads-T-UxpSx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099470305</pqid></control><display><type>article</type><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Xuemei</creator><creatorcontrib>Liu, Xuemei</creatorcontrib><description>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</description><identifier>ISSN: 1794-6190</identifier><identifier>EISSN: 2339-3459</identifier><identifier>DOI: 10.15446/esrj.v26n3.103605</identifier><language>eng</language><publisher>Bogata: Universidad Nacional de Colombia, Departamento de Geociencias</publisher><subject>Analysis ; Anomalies ; Construction costs ; Data acquisition ; Engineering geology ; Fault detection ; Feature extraction ; Geological data ; Geological processes ; Geological structures ; Geology ; GEOSCIENCES, MULTIDISCIPLINARY ; Hydrogeology ; Karst ; Landforms ; Lithofacies ; Lithology ; Methods ; Mountain tunnels ; Soil structure ; Tunnel construction ; Tunnels ; Underground structures ; Visualization (Computers)</subject><ispartof>Earth sciences research journal, 2022-09, Vol.26 (3), p.255-262</ispartof><rights>COPYRIGHT 2022 Universidad Nacional de Colombia, Departamento de Geociencias</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Xuemei</creatorcontrib><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><title>Earth sciences research journal</title><addtitle>Earth Sci. Res. J</addtitle><description>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</description><subject>Analysis</subject><subject>Anomalies</subject><subject>Construction costs</subject><subject>Data acquisition</subject><subject>Engineering geology</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Geological data</subject><subject>Geological processes</subject><subject>Geological structures</subject><subject>Geology</subject><subject>GEOSCIENCES, MULTIDISCIPLINARY</subject><subject>Hydrogeology</subject><subject>Karst</subject><subject>Landforms</subject><subject>Lithofacies</subject><subject>Lithology</subject><subject>Methods</subject><subject>Mountain tunnels</subject><subject>Soil structure</subject><subject>Tunnel construction</subject><subject>Tunnels</subject><subject>Underground structures</subject><subject>Visualization (Computers)</subject><issn>1794-6190</issn><issn>2339-3459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkU9rHDEMxYfSQLdJvkBOhp5nK_-Pj0tom9JADm3OxuuRJ15m7NT2FPrtO5stJEEHIfF-T6DXdVcUtlQKoT5jLYftH6YS31LgCuS7bsM4Nz0X0rzvNlQb0Stq4EP3sdYDgNSMyU132JEBG_oWcyIztsc8kBzIUvYukSUNWMaS105GzFMeo3cTcSnPbopYSUykPSJ5SLHhQH7ENA55JntX12n1C-jaUpCEpa72F91ZcFPFy__9vHv4-uXXzW1_d__t-83urvdMsdaza8O05p56HpSgXtEAzKgAKDx4YEIYkGaQw7Xgmu2Fc8roIJh3IWimOT_vtiff6iNO2R7yUtJ60P48PsEen8CAMQDgAEzKFfh0Ap5K_r1gbS8IB2OEXoWvVKOb0MYUcivOz7F6u9MclDLU0Jfjb1RrDThHnxOGuO7fAOwE-JJrLRjsU4mzK38tBfucrT1ma5-ztads-T-UxpSx</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Xuemei</creator><general>Universidad Nacional de Colombia, Departamento de Geociencias</general><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>GPN</scope></search><sort><creationdate>20220901</creationdate><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><author>Liu, Xuemei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Anomalies</topic><topic>Construction costs</topic><topic>Data acquisition</topic><topic>Engineering geology</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Geological data</topic><topic>Geological processes</topic><topic>Geological structures</topic><topic>Geology</topic><topic>GEOSCIENCES, MULTIDISCIPLINARY</topic><topic>Hydrogeology</topic><topic>Karst</topic><topic>Landforms</topic><topic>Lithofacies</topic><topic>Lithology</topic><topic>Methods</topic><topic>Mountain tunnels</topic><topic>Soil structure</topic><topic>Tunnel construction</topic><topic>Tunnels</topic><topic>Underground structures</topic><topic>Visualization (Computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuemei</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Earth sciences research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuemei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</atitle><jtitle>Earth sciences research journal</jtitle><addtitle>Earth Sci. Res. J</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>255</spage><epage>262</epage><pages>255-262</pages><issn>1794-6190</issn><eissn>2339-3459</eissn><abstract>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</abstract><cop>Bogata</cop><pub>Universidad Nacional de Colombia, Departamento de Geociencias</pub><doi>10.15446/esrj.v26n3.103605</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1794-6190
ispartof Earth sciences research journal, 2022-09, Vol.26 (3), p.255-262
issn 1794-6190
2339-3459
language eng
recordid cdi_scielo_journals_S1794_61902022000300255
source EZB-FREE-00999 freely available EZB journals
subjects Analysis
Anomalies
Construction costs
Data acquisition
Engineering geology
Fault detection
Feature extraction
Geological data
Geological processes
Geological structures
Geology
GEOSCIENCES, MULTIDISCIPLINARY
Hydrogeology
Karst
Landforms
Lithofacies
Lithology
Methods
Mountain tunnels
Soil structure
Tunnel construction
Tunnels
Underground structures
Visualization (Computers)
title A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20detection%20method%20of%20urban%20underground%20geological%20anomalies%20in%20the%20United%20Kingdom%20based%20on%20feature%20fusion&rft.jtitle=Earth%20sciences%20research%20journal&rft.au=Liu,%20Xuemei&rft.date=2022-09-01&rft.volume=26&rft.issue=3&rft.spage=255&rft.epage=262&rft.pages=255-262&rft.issn=1794-6190&rft.eissn=2339-3459&rft_id=info:doi/10.15446/esrj.v26n3.103605&rft_dat=%3Cgale_sciel%3EA730669191%3C/gale_sciel%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099470305&rft_id=info:pmid/&rft_galeid=A730669191&rft_scielo_id=S1794_61902022000300255&rfr_iscdi=true