A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion
Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels...
Gespeichert in:
Veröffentlicht in: | Earth sciences research journal 2022-09, Vol.26 (3), p.255-262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 3 |
container_start_page | 255 |
container_title | Earth sciences research journal |
container_volume | 26 |
creator | Liu, Xuemei |
description | Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination. |
doi_str_mv | 10.15446/esrj.v26n3.103605 |
format | Article |
fullrecord | <record><control><sourceid>gale_sciel</sourceid><recordid>TN_cdi_scielo_journals_S1794_61902022000300255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730669191</galeid><scielo_id>S1794_61902022000300255</scielo_id><sourcerecordid>A730669191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</originalsourceid><addsrcrecordid>eNpVkU9rHDEMxYfSQLdJvkBOhp5nK_-Pj0tom9JADm3OxuuRJ15m7NT2FPrtO5stJEEHIfF-T6DXdVcUtlQKoT5jLYftH6YS31LgCuS7bsM4Nz0X0rzvNlQb0Stq4EP3sdYDgNSMyU132JEBG_oWcyIztsc8kBzIUvYukSUNWMaS105GzFMeo3cTcSnPbopYSUykPSJ5SLHhQH7ENA55JntX12n1C-jaUpCEpa72F91ZcFPFy__9vHv4-uXXzW1_d__t-83urvdMsdaza8O05p56HpSgXtEAzKgAKDx4YEIYkGaQw7Xgmu2Fc8roIJh3IWimOT_vtiff6iNO2R7yUtJ60P48PsEen8CAMQDgAEzKFfh0Ap5K_r1gbS8IB2OEXoWvVKOb0MYUcivOz7F6u9MclDLU0Jfjb1RrDThHnxOGuO7fAOwE-JJrLRjsU4mzK38tBfucrT1ma5-ztads-T-UxpSx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099470305</pqid></control><display><type>article</type><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Xuemei</creator><creatorcontrib>Liu, Xuemei</creatorcontrib><description>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</description><identifier>ISSN: 1794-6190</identifier><identifier>EISSN: 2339-3459</identifier><identifier>DOI: 10.15446/esrj.v26n3.103605</identifier><language>eng</language><publisher>Bogata: Universidad Nacional de Colombia, Departamento de Geociencias</publisher><subject>Analysis ; Anomalies ; Construction costs ; Data acquisition ; Engineering geology ; Fault detection ; Feature extraction ; Geological data ; Geological processes ; Geological structures ; Geology ; GEOSCIENCES, MULTIDISCIPLINARY ; Hydrogeology ; Karst ; Landforms ; Lithofacies ; Lithology ; Methods ; Mountain tunnels ; Soil structure ; Tunnel construction ; Tunnels ; Underground structures ; Visualization (Computers)</subject><ispartof>Earth sciences research journal, 2022-09, Vol.26 (3), p.255-262</ispartof><rights>COPYRIGHT 2022 Universidad Nacional de Colombia, Departamento de Geociencias</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Xuemei</creatorcontrib><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><title>Earth sciences research journal</title><addtitle>Earth Sci. Res. J</addtitle><description>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</description><subject>Analysis</subject><subject>Anomalies</subject><subject>Construction costs</subject><subject>Data acquisition</subject><subject>Engineering geology</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Geological data</subject><subject>Geological processes</subject><subject>Geological structures</subject><subject>Geology</subject><subject>GEOSCIENCES, MULTIDISCIPLINARY</subject><subject>Hydrogeology</subject><subject>Karst</subject><subject>Landforms</subject><subject>Lithofacies</subject><subject>Lithology</subject><subject>Methods</subject><subject>Mountain tunnels</subject><subject>Soil structure</subject><subject>Tunnel construction</subject><subject>Tunnels</subject><subject>Underground structures</subject><subject>Visualization (Computers)</subject><issn>1794-6190</issn><issn>2339-3459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkU9rHDEMxYfSQLdJvkBOhp5nK_-Pj0tom9JADm3OxuuRJ15m7NT2FPrtO5stJEEHIfF-T6DXdVcUtlQKoT5jLYftH6YS31LgCuS7bsM4Nz0X0rzvNlQb0Stq4EP3sdYDgNSMyU132JEBG_oWcyIztsc8kBzIUvYukSUNWMaS105GzFMeo3cTcSnPbopYSUykPSJ5SLHhQH7ENA55JntX12n1C-jaUpCEpa72F91ZcFPFy__9vHv4-uXXzW1_d__t-83urvdMsdaza8O05p56HpSgXtEAzKgAKDx4YEIYkGaQw7Xgmu2Fc8roIJh3IWimOT_vtiff6iNO2R7yUtJ60P48PsEen8CAMQDgAEzKFfh0Ap5K_r1gbS8IB2OEXoWvVKOb0MYUcivOz7F6u9MclDLU0Jfjb1RrDThHnxOGuO7fAOwE-JJrLRjsU4mzK38tBfucrT1ma5-ztads-T-UxpSx</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Xuemei</creator><general>Universidad Nacional de Colombia, Departamento de Geociencias</general><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>GPN</scope></search><sort><creationdate>20220901</creationdate><title>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</title><author>Liu, Xuemei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-2892773c1c3f641c61f0296f0e4c0c02449059d5d84372b4aa697f42caff72733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Anomalies</topic><topic>Construction costs</topic><topic>Data acquisition</topic><topic>Engineering geology</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Geological data</topic><topic>Geological processes</topic><topic>Geological structures</topic><topic>Geology</topic><topic>GEOSCIENCES, MULTIDISCIPLINARY</topic><topic>Hydrogeology</topic><topic>Karst</topic><topic>Landforms</topic><topic>Lithofacies</topic><topic>Lithology</topic><topic>Methods</topic><topic>Mountain tunnels</topic><topic>Soil structure</topic><topic>Tunnel construction</topic><topic>Tunnels</topic><topic>Underground structures</topic><topic>Visualization (Computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuemei</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SciELO</collection><jtitle>Earth sciences research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuemei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion</atitle><jtitle>Earth sciences research journal</jtitle><addtitle>Earth Sci. Res. J</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>255</spage><epage>262</epage><pages>255-262</pages><issn>1794-6190</issn><eissn>2339-3459</eissn><abstract>Engineering geological conditions include the nature of rock and soil, geological structure, landform, hydrogeological conditions, and adverse geological processes. Among them, faults, fissures, folds, karst, and lithology changes seriously affect the safety and construction cost of mountain tunnels, hydraulic tunnels, and other projects. For this reason, a new method based on feature fusion is proposed to detect the geological anomalies in London and Sheffield. It established a 3D raster data model oriented to attribute information modeling and visualization of urban underground space to obtain geological data. Based on this acquired data, authors adopted the feature-level fusion extraction method based on the multi-attribute geological abnormal body to extract, fuse, fill and surface the multi-attribute data of underground space geological data. Smooth processing can realize the detection of abnormal geological bodies in underground space. It has been proved that this method can be used in geological data display, feature extraction, feature fusion, and abnormal physical examination.</abstract><cop>Bogata</cop><pub>Universidad Nacional de Colombia, Departamento de Geociencias</pub><doi>10.15446/esrj.v26n3.103605</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1794-6190 |
ispartof | Earth sciences research journal, 2022-09, Vol.26 (3), p.255-262 |
issn | 1794-6190 2339-3459 |
language | eng |
recordid | cdi_scielo_journals_S1794_61902022000300255 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Anomalies Construction costs Data acquisition Engineering geology Fault detection Feature extraction Geological data Geological processes Geological structures Geology GEOSCIENCES, MULTIDISCIPLINARY Hydrogeology Karst Landforms Lithofacies Lithology Methods Mountain tunnels Soil structure Tunnel construction Tunnels Underground structures Visualization (Computers) |
title | A detection method of urban underground geological anomalies in the United Kingdom based on feature fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20detection%20method%20of%20urban%20underground%20geological%20anomalies%20in%20the%20United%20Kingdom%20based%20on%20feature%20fusion&rft.jtitle=Earth%20sciences%20research%20journal&rft.au=Liu,%20Xuemei&rft.date=2022-09-01&rft.volume=26&rft.issue=3&rft.spage=255&rft.epage=262&rft.pages=255-262&rft.issn=1794-6190&rft.eissn=2339-3459&rft_id=info:doi/10.15446/esrj.v26n3.103605&rft_dat=%3Cgale_sciel%3EA730669191%3C/gale_sciel%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099470305&rft_id=info:pmid/&rft_galeid=A730669191&rft_scielo_id=S1794_61902022000300255&rfr_iscdi=true |