Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells
Abstract The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account fo...
Gespeichert in:
Veröffentlicht in: | Latin American journal of solids and structures 2022, Vol.19 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Latin American journal of solids and structures |
container_volume | 19 |
creator | Nwoji, Clifford Ugochukwu Ani, Deval Godwill |
description | Abstract The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature (l/a) ratios. |
doi_str_mv | 10.1590/1679-78256843 |
format | Article |
fullrecord | <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S1679_78252022000300503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S1679_78252022000300503</scielo_id><sourcerecordid>S1679_78252022000300503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1883-760a6d615ed9842057aa7d4bb2416332e7f58e5f388cecf0c87bfe4ce8cb01db3</originalsourceid><addsrcrecordid>eNo9kD1OAzEQhS0EElFISe8LbPDPeu2UKOJPikQRqC2vPU4cnDWyk2I77sANOQm7BGWamXma9zT6ELqlZE7FgtzRRi4qqZhoVM0v0OS8X55nKq_RrJQdGYrTWgg5QZs12NS5n6_vlB1kvE8OYsE-ZXzYAm6hc6HbYNOZ2JdQcPKDHrpBcH-32Rwg9qNmP7AN2R6jydj2MXQuB2siLluIsdygK29igdl_n6L3x4e35XO1en16Wd6vKkuV4pVsiGlcQwW4haoZEdIY6eq2ZTVtOGcgvVAgPFfKgvXEKtl6qC0o2xLqWj5F81NusQFi0rt0zMPvRa9HCHoEwghjIwFCBOGDoToZbE6lZPD6M4e9yb2mRI9k9dk4kuW_jMJrRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nwoji, Clifford Ugochukwu ; Ani, Deval Godwill</creator><creatorcontrib>Nwoji, Clifford Ugochukwu ; Ani, Deval Godwill</creatorcontrib><description>Abstract The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature (l/a) ratios.</description><identifier>ISSN: 1679-7817</identifier><identifier>ISSN: 1679-7825</identifier><identifier>EISSN: 1679-7825</identifier><identifier>DOI: 10.1590/1679-78256843</identifier><language>eng</language><publisher>Associação Brasileira de Ciências Mecânicas</publisher><subject>ENGINEERING, CIVIL ; ENGINEERING, MECHANICAL ; MECHANICS</subject><ispartof>Latin American journal of solids and structures, 2022, Vol.19 (3)</ispartof><rights>This work is licensed under a Creative Commons Attribution 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1883-760a6d615ed9842057aa7d4bb2416332e7f58e5f388cecf0c87bfe4ce8cb01db3</citedby><cites>FETCH-LOGICAL-c1883-760a6d615ed9842057aa7d4bb2416332e7f58e5f388cecf0c87bfe4ce8cb01db3</cites><orcidid>0000-0003-3129-6097 ; 0000-0002-8114-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Nwoji, Clifford Ugochukwu</creatorcontrib><creatorcontrib>Ani, Deval Godwill</creatorcontrib><title>Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells</title><title>Latin American journal of solids and structures</title><addtitle>Lat. Am. j. solids struct</addtitle><description>Abstract The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature (l/a) ratios.</description><subject>ENGINEERING, CIVIL</subject><subject>ENGINEERING, MECHANICAL</subject><subject>MECHANICS</subject><issn>1679-7817</issn><issn>1679-7825</issn><issn>1679-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kD1OAzEQhS0EElFISe8LbPDPeu2UKOJPikQRqC2vPU4cnDWyk2I77sANOQm7BGWamXma9zT6ELqlZE7FgtzRRi4qqZhoVM0v0OS8X55nKq_RrJQdGYrTWgg5QZs12NS5n6_vlB1kvE8OYsE-ZXzYAm6hc6HbYNOZ2JdQcPKDHrpBcH-32Rwg9qNmP7AN2R6jydj2MXQuB2siLluIsdygK29igdl_n6L3x4e35XO1en16Wd6vKkuV4pVsiGlcQwW4haoZEdIY6eq2ZTVtOGcgvVAgPFfKgvXEKtl6qC0o2xLqWj5F81NusQFi0rt0zMPvRa9HCHoEwghjIwFCBOGDoToZbE6lZPD6M4e9yb2mRI9k9dk4kuW_jMJrRg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Nwoji, Clifford Ugochukwu</creator><creator>Ani, Deval Godwill</creator><general>Associação Brasileira de Ciências Mecânicas</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope><orcidid>https://orcid.org/0000-0003-3129-6097</orcidid><orcidid>https://orcid.org/0000-0002-8114-5150</orcidid></search><sort><creationdate>202201</creationdate><title>Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells</title><author>Nwoji, Clifford Ugochukwu ; Ani, Deval Godwill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1883-760a6d615ed9842057aa7d4bb2416332e7f58e5f388cecf0c87bfe4ce8cb01db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ENGINEERING, CIVIL</topic><topic>ENGINEERING, MECHANICAL</topic><topic>MECHANICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nwoji, Clifford Ugochukwu</creatorcontrib><creatorcontrib>Ani, Deval Godwill</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Latin American journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nwoji, Clifford Ugochukwu</au><au>Ani, Deval Godwill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells</atitle><jtitle>Latin American journal of solids and structures</jtitle><addtitle>Lat. Am. j. solids struct</addtitle><date>2022-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><issn>1679-7817</issn><issn>1679-7825</issn><eissn>1679-7825</eissn><abstract>Abstract The suitability of employing the second-order shear deformation theory to static bending problems of thin and moderately thick isotropic circular cylindrical shells was investigated. Two variant forms of the polynomial second-order displacement models were considered. Both models account for quadratic expansions of the surface displacements along the shell thickness, although the second model (SSODM) was augmented by the initial curvature term. The equilibrium equations were derived by use of the principle of virtual work. Navier analytical solutions were obtained under simply supported boundary conditions. The results of the displacements and stresses revealed that the theory formulated on the SSODM provides a good depiction of the bending response of thin and moderately thick shells and are in close agreement with those of the first and higher-order shear deformation theories (FSDT; HSDT). The ability of the theory formulated on the first model (FSODM) to predict adequate values of displacements and stresses in thin shells was found to be significantly affected by changes in length to radius of curvature (l/a) ratios.</abstract><pub>Associação Brasileira de Ciências Mecânicas</pub><doi>10.1590/1679-78256843</doi><orcidid>https://orcid.org/0000-0003-3129-6097</orcidid><orcidid>https://orcid.org/0000-0002-8114-5150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1679-7817 |
ispartof | Latin American journal of solids and structures, 2022, Vol.19 (3) |
issn | 1679-7817 1679-7825 1679-7825 |
language | eng |
recordid | cdi_scielo_journals_S1679_78252022000300503 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | ENGINEERING, CIVIL ENGINEERING, MECHANICAL MECHANICS |
title | Second–order models for the bending analysis of thin and moderately thick circular cylindrical shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%E2%80%93order%20models%20for%20the%20bending%20analysis%20of%20thin%20and%20moderately%20thick%20circular%20cylindrical%20shells&rft.jtitle=Latin%20American%20journal%20of%20solids%20and%20structures&rft.au=Nwoji,%20Clifford%20Ugochukwu&rft.date=2022-01&rft.volume=19&rft.issue=3&rft.issn=1679-7817&rft.eissn=1679-7825&rft_id=info:doi/10.1590/1679-78256843&rft_dat=%3Cscielo_cross%3ES1679_78252022000300503%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S1679_78252022000300503&rfr_iscdi=true |