Effect of MoS2 Concentration on Microstructure and Tribological Behavior of Electrophoretic-Electrodeposited Ni-Co-Al2O3-MoS2 Composites
Ni-Co-Al2O3-MoS2 composite coatings were prepared on the surface ofLY12 aluminum alloys by electrophoresis-electrodeposition with different MoS2 concentrations. The microstructure, morphologies and composition of Ni-Co-Al2O3-MoS2 composites were characterized by X-ray diffractometer (XRD) and scanni...
Gespeichert in:
Veröffentlicht in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2020-01, Vol.23 (5), p.1, Article 20200296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ni-Co-Al2O3-MoS2 composite coatings were prepared on the surface ofLY12 aluminum alloys by electrophoresis-electrodeposition with different MoS2 concentrations. The microstructure, morphologies and composition of Ni-Co-Al2O3-MoS2 composites were characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscope (EDS). The micro-indentation hardness as well as friction and tribological properties of the coatings were tested by micro-hardness tester and friction and wear tester separately. Results revealed that the composite coating fabricated at 1.0 g.L-1 MoS2 achieved dense structure, and the average thickness of the coating was 39.820 mu m. The micro-indentation hardness of the composite coating was decreased from 578 HV to 465 HV with the increase of MoS2 concentration. Also, the composite coating synthesized at 1.0 g.L-1 MoS2 had the lowest friction coefficient and wear rate. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-MR-2020-0296 |