Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort

ABSTRACT Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmósfera 2023, Vol.37
Hauptverfasser: Cervantes-Martínez, Karla, Riojas-Rodríguez, Horacio, Díaz-Ávalos, Carlos, Moreno-Macías, Hortensia, López-Ridaura, Ruy, Stern, Dalia, Acosta-Montes, Jorge Octavio, Texcalac-Sangrador, José Luis
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Atmósfera
container_volume 37
creator Cervantes-Martínez, Karla
Riojas-Rodríguez, Horacio
Díaz-Ávalos, Carlos
Moreno-Macías, Hortensia
López-Ridaura, Ruy
Stern, Dalia
Acosta-Montes, Jorge Octavio
Texcalac-Sangrador, José Luis
description ABSTRACT Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16 500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE = 0.102 for PM2.5 and CV-RMSE = 4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) µg m-3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatiotemporal resolution for epidemiological studies in the Mexico City Metropolitan Area.
doi_str_mv 10.20937/atm.53110
format Article
fullrecord <record><control><sourceid>scielo</sourceid><recordid>TN_cdi_scielo_journals_S0187_62362023000300012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0187_62362023000300012</scielo_id><sourcerecordid>S0187_62362023000300012</sourcerecordid><originalsourceid>FETCH-LOGICAL-s194t-d5125f0f60fea102ae6fb747d64b27b0b5c10131ecc9daf17197a8b0ba967ff03</originalsourceid><addsrcrecordid>eNotUEFOwzAQ9AEkSuHCC_yBhF07iZsjqqAgtRSJcq4cZ92kJHEUu1KPfIPv9SU0wGE00sxoRhrG7hBiAblU9zq0cSoR4YJNAGcqyoTMrti193uAJE1myYR9LsgZV9bdjuuu5L7XoXaB2t4NuuGtK6kZPWd547pdFGho-dtKxOlv_HUtOB175w8D8brjoSK-omNtdMc3pE1Fgz99ffO5q9wQbtil1Y2n23-eso-nx838OVquFy_zh2XkMU9CVKYoUgs2A0saQWjKbKESVWZJIVQBRWoQUCIZk5faosJc6dlZ13mmrAU5ZfFfrzc1NW67d4ehOw9u38cXtuMLAoQEgBEo5A-TlFpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cervantes-Martínez, Karla ; Riojas-Rodríguez, Horacio ; Díaz-Ávalos, Carlos ; Moreno-Macías, Hortensia ; López-Ridaura, Ruy ; Stern, Dalia ; Acosta-Montes, Jorge Octavio ; Texcalac-Sangrador, José Luis</creator><creatorcontrib>Cervantes-Martínez, Karla ; Riojas-Rodríguez, Horacio ; Díaz-Ávalos, Carlos ; Moreno-Macías, Hortensia ; López-Ridaura, Ruy ; Stern, Dalia ; Acosta-Montes, Jorge Octavio ; Texcalac-Sangrador, José Luis</creatorcontrib><description>ABSTRACT Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16 500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE = 0.102 for PM2.5 and CV-RMSE = 4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) µg m-3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatiotemporal resolution for epidemiological studies in the Mexico City Metropolitan Area.</description><identifier>ISSN: 0187-6236</identifier><identifier>DOI: 10.20937/atm.53110</identifier><language>eng ; por</language><publisher>Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera</publisher><subject>Meteorology &amp; Atmospheric Sciences</subject><ispartof>Atmósfera, 2023, Vol.37</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Cervantes-Martínez, Karla</creatorcontrib><creatorcontrib>Riojas-Rodríguez, Horacio</creatorcontrib><creatorcontrib>Díaz-Ávalos, Carlos</creatorcontrib><creatorcontrib>Moreno-Macías, Hortensia</creatorcontrib><creatorcontrib>López-Ridaura, Ruy</creatorcontrib><creatorcontrib>Stern, Dalia</creatorcontrib><creatorcontrib>Acosta-Montes, Jorge Octavio</creatorcontrib><creatorcontrib>Texcalac-Sangrador, José Luis</creatorcontrib><title>Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort</title><title>Atmósfera</title><addtitle>Atmósfera</addtitle><description>ABSTRACT Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16 500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE = 0.102 for PM2.5 and CV-RMSE = 4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) µg m-3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatiotemporal resolution for epidemiological studies in the Mexico City Metropolitan Area.</description><subject>Meteorology &amp; Atmospheric Sciences</subject><issn>0187-6236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotUEFOwzAQ9AEkSuHCC_yBhF07iZsjqqAgtRSJcq4cZ92kJHEUu1KPfIPv9SU0wGE00sxoRhrG7hBiAblU9zq0cSoR4YJNAGcqyoTMrti193uAJE1myYR9LsgZV9bdjuuu5L7XoXaB2t4NuuGtK6kZPWd547pdFGho-dtKxOlv_HUtOB175w8D8brjoSK-omNtdMc3pE1Fgz99ffO5q9wQbtil1Y2n23-eso-nx838OVquFy_zh2XkMU9CVKYoUgs2A0saQWjKbKESVWZJIVQBRWoQUCIZk5faosJc6dlZ13mmrAU5ZfFfrzc1NW67d4ehOw9u38cXtuMLAoQEgBEo5A-TlFpk</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Cervantes-Martínez, Karla</creator><creator>Riojas-Rodríguez, Horacio</creator><creator>Díaz-Ávalos, Carlos</creator><creator>Moreno-Macías, Hortensia</creator><creator>López-Ridaura, Ruy</creator><creator>Stern, Dalia</creator><creator>Acosta-Montes, Jorge Octavio</creator><creator>Texcalac-Sangrador, José Luis</creator><general>Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera</general><scope>GPN</scope></search><sort><creationdate>202301</creationdate><title>Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort</title><author>Cervantes-Martínez, Karla ; Riojas-Rodríguez, Horacio ; Díaz-Ávalos, Carlos ; Moreno-Macías, Hortensia ; López-Ridaura, Ruy ; Stern, Dalia ; Acosta-Montes, Jorge Octavio ; Texcalac-Sangrador, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s194t-d5125f0f60fea102ae6fb747d64b27b0b5c10131ecc9daf17197a8b0ba967ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2023</creationdate><topic>Meteorology &amp; Atmospheric Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervantes-Martínez, Karla</creatorcontrib><creatorcontrib>Riojas-Rodríguez, Horacio</creatorcontrib><creatorcontrib>Díaz-Ávalos, Carlos</creatorcontrib><creatorcontrib>Moreno-Macías, Hortensia</creatorcontrib><creatorcontrib>López-Ridaura, Ruy</creatorcontrib><creatorcontrib>Stern, Dalia</creatorcontrib><creatorcontrib>Acosta-Montes, Jorge Octavio</creatorcontrib><creatorcontrib>Texcalac-Sangrador, José Luis</creatorcontrib><collection>SciELO</collection><jtitle>Atmósfera</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cervantes-Martínez, Karla</au><au>Riojas-Rodríguez, Horacio</au><au>Díaz-Ávalos, Carlos</au><au>Moreno-Macías, Hortensia</au><au>López-Ridaura, Ruy</au><au>Stern, Dalia</au><au>Acosta-Montes, Jorge Octavio</au><au>Texcalac-Sangrador, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort</atitle><jtitle>Atmósfera</jtitle><addtitle>Atmósfera</addtitle><date>2023-01</date><risdate>2023</risdate><volume>37</volume><issn>0187-6236</issn><abstract>ABSTRACT Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16 500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE = 0.102 for PM2.5 and CV-RMSE = 4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) µg m-3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatiotemporal resolution for epidemiological studies in the Mexico City Metropolitan Area.</abstract><pub>Universidad Nacional Autónoma de México, Centro de Ciencias de la Atmósfera</pub><doi>10.20937/atm.53110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0187-6236
ispartof Atmósfera, 2023, Vol.37
issn 0187-6236
language eng ; por
recordid cdi_scielo_journals_S0187_62362023000300012
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Meteorology & Atmospheric Sciences
title Geocoding and spatiotemporal modeling of long-term PM2.5 and NO2 exposure in the Mexican Teachers’ Cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geocoding%20and%20spatiotemporal%20modeling%20of%20long-term%20PM2.5%20and%20NO2%20exposure%20in%20the%20Mexican%20Teachers%E2%80%99%20Cohort&rft.jtitle=Atmo%CC%81sfera&rft.au=Cervantes-Mart%C3%ADnez,%20Karla&rft.date=2023-01&rft.volume=37&rft.issn=0187-6236&rft_id=info:doi/10.20937/atm.53110&rft_dat=%3Cscielo%3ES0187_62362023000300012%3C/scielo%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0187_62362023000300012&rfr_iscdi=true