THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS

We study self-gravitating, hydrostatic spheres with a polytropic equation of state P ∝ ρ^γ (where γ is the specific heat ratio of the gas), considering structures with γ ≈ 1 as a model for molecular cloud cores with small departures from isother- mality. We derive the properties (i.e., mass, radius...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de astronomía y astrofísica 2020-04, Vol.56 (1), p.55-62
Hauptverfasser: Raga, A. C., Osorio-Caballero, J. A., Chan, R. S., Esquivel, A., Rodrı́guez-González, A., Lora, V., Rodrı́guez Ramı́rez, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 55
container_title Revista mexicana de astronomía y astrofísica
container_volume 56
creator Raga, A. C.
Osorio-Caballero, J. A.
Chan, R. S.
Esquivel, A.
Rodrı́guez-González, A.
Lora, V.
Rodrı́guez Ramı́rez, J. C.
description We study self-gravitating, hydrostatic spheres with a polytropic equation of state P ∝ ρ^γ (where γ is the specific heat ratio of the gas), considering structures with γ ≈ 1 as a model for molecular cloud cores with small departures from isother- mality. We derive the properties (i.e., mass, radius and center to edge density ratio) as a function of γ for the maximal stable sphere through an application of “Bonnor’s stability criterion”. We find that in the γ = 1 → 4/3 range the mass of the maximal sphere (for a given central temperature) is almost constant, and that its radius and center to edge density ratio are growing functions of γ. We therefore have maximal stable, self-gravitating spheres with similar masses, but with increasing center to edge density contrasts for increasing departures from isothermality.
doi_str_mv 10.22201/ia.01851101p.2020.56.01.07
format Article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0185_11012020000100055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0185_11012020000100055</scielo_id><sourcerecordid>S0185_11012020000100055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2683bb6c2fc27ce6fdca81ba3efb565472aabb56f8949cf12d1183114c2e76453</originalsourceid><addsrcrecordid>eNo9kN9KwzAUh3Oh4PzzDgFvbc1Jm7RDvKg1XQNlLW1UdhXSrIWN6UarFz6X7-EzmToxcEg4v_OdwIfQNRCfUkrgdmN8AjEDIHDwKaHEZ9x1fBKdoNmUeFN0hs7HcUsICYBHM7RTucBVXVaiVlI0OFk-4kYlD7KQaoXLDDeiyLxFnTxLlSi5XNzgqixWyhEyxU2Vi9pRL1Ll-PsL32PAqsTghy4SqczcTC4ShWvHls0lOu3Nbuyu_u4L9JQJleZeUS5kmhSeDVj07lEeB23LLe0tjWzH-7U1MbQm6PqWcRZG1JjWvfp4Hs5tD3QNEAcAoaVdxEMWXCD_uHe0m26319v9x_DmPtTNpEFPGiY_7oArNgF3R8AO-3Ecul4fhs2rGT41EP1rV2-M_rerJ1oz7jqaRMEPfuBlhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Raga, A. C. ; Osorio-Caballero, J. A. ; Chan, R. S. ; Esquivel, A. ; Rodrı́guez-González, A. ; Lora, V. ; Rodrı́guez Ramı́rez, J. C.</creator><creatorcontrib>Raga, A. C. ; Osorio-Caballero, J. A. ; Chan, R. S. ; Esquivel, A. ; Rodrı́guez-González, A. ; Lora, V. ; Rodrı́guez Ramı́rez, J. C.</creatorcontrib><description>We study self-gravitating, hydrostatic spheres with a polytropic equation of state P ∝ ρ^γ (where γ is the specific heat ratio of the gas), considering structures with γ ≈ 1 as a model for molecular cloud cores with small departures from isother- mality. We derive the properties (i.e., mass, radius and center to edge density ratio) as a function of γ for the maximal stable sphere through an application of “Bonnor’s stability criterion”. We find that in the γ = 1 → 4/3 range the mass of the maximal sphere (for a given central temperature) is almost constant, and that its radius and center to edge density ratio are growing functions of γ. We therefore have maximal stable, self-gravitating spheres with similar masses, but with increasing center to edge density contrasts for increasing departures from isothermality.</description><identifier>ISSN: 0185-1101</identifier><identifier>DOI: 10.22201/ia.01851101p.2020.56.01.07</identifier><language>eng</language><publisher>Instituto de Astronomía, UNAM</publisher><subject>Astronomy &amp; Astrophysics</subject><ispartof>Revista mexicana de astronomía y astrofísica, 2020-04, Vol.56 (1), p.55-62</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2683bb6c2fc27ce6fdca81ba3efb565472aabb56f8949cf12d1183114c2e76453</citedby><cites>FETCH-LOGICAL-c357t-2683bb6c2fc27ce6fdca81ba3efb565472aabb56f8949cf12d1183114c2e76453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Raga, A. C.</creatorcontrib><creatorcontrib>Osorio-Caballero, J. A.</creatorcontrib><creatorcontrib>Chan, R. S.</creatorcontrib><creatorcontrib>Esquivel, A.</creatorcontrib><creatorcontrib>Rodrı́guez-González, A.</creatorcontrib><creatorcontrib>Lora, V.</creatorcontrib><creatorcontrib>Rodrı́guez Ramı́rez, J. C.</creatorcontrib><title>THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS</title><title>Revista mexicana de astronomía y astrofísica</title><addtitle>Rev. mex. astron. astrofis</addtitle><description>We study self-gravitating, hydrostatic spheres with a polytropic equation of state P ∝ ρ^γ (where γ is the specific heat ratio of the gas), considering structures with γ ≈ 1 as a model for molecular cloud cores with small departures from isother- mality. We derive the properties (i.e., mass, radius and center to edge density ratio) as a function of γ for the maximal stable sphere through an application of “Bonnor’s stability criterion”. We find that in the γ = 1 → 4/3 range the mass of the maximal sphere (for a given central temperature) is almost constant, and that its radius and center to edge density ratio are growing functions of γ. We therefore have maximal stable, self-gravitating spheres with similar masses, but with increasing center to edge density contrasts for increasing departures from isothermality.</description><subject>Astronomy &amp; Astrophysics</subject><issn>0185-1101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kN9KwzAUh3Oh4PzzDgFvbc1Jm7RDvKg1XQNlLW1UdhXSrIWN6UarFz6X7-EzmToxcEg4v_OdwIfQNRCfUkrgdmN8AjEDIHDwKaHEZ9x1fBKdoNmUeFN0hs7HcUsICYBHM7RTucBVXVaiVlI0OFk-4kYlD7KQaoXLDDeiyLxFnTxLlSi5XNzgqixWyhEyxU2Vi9pRL1Ll-PsL32PAqsTghy4SqczcTC4ShWvHls0lOu3Nbuyu_u4L9JQJleZeUS5kmhSeDVj07lEeB23LLe0tjWzH-7U1MbQm6PqWcRZG1JjWvfp4Hs5tD3QNEAcAoaVdxEMWXCD_uHe0m26319v9x_DmPtTNpEFPGiY_7oArNgF3R8AO-3Ecul4fhs2rGT41EP1rV2-M_rerJ1oz7jqaRMEPfuBlhw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Raga, A. C.</creator><creator>Osorio-Caballero, J. A.</creator><creator>Chan, R. S.</creator><creator>Esquivel, A.</creator><creator>Rodrı́guez-González, A.</creator><creator>Lora, V.</creator><creator>Rodrı́guez Ramı́rez, J. C.</creator><general>Instituto de Astronomía, UNAM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20200401</creationdate><title>THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS</title><author>Raga, A. C. ; Osorio-Caballero, J. A. ; Chan, R. S. ; Esquivel, A. ; Rodrı́guez-González, A. ; Lora, V. ; Rodrı́guez Ramı́rez, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2683bb6c2fc27ce6fdca81ba3efb565472aabb56f8949cf12d1183114c2e76453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy &amp; Astrophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raga, A. C.</creatorcontrib><creatorcontrib>Osorio-Caballero, J. A.</creatorcontrib><creatorcontrib>Chan, R. S.</creatorcontrib><creatorcontrib>Esquivel, A.</creatorcontrib><creatorcontrib>Rodrı́guez-González, A.</creatorcontrib><creatorcontrib>Lora, V.</creatorcontrib><creatorcontrib>Rodrı́guez Ramı́rez, J. C.</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Revista mexicana de astronomía y astrofísica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raga, A. C.</au><au>Osorio-Caballero, J. A.</au><au>Chan, R. S.</au><au>Esquivel, A.</au><au>Rodrı́guez-González, A.</au><au>Lora, V.</au><au>Rodrı́guez Ramı́rez, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS</atitle><jtitle>Revista mexicana de astronomía y astrofísica</jtitle><addtitle>Rev. mex. astron. astrofis</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>0185-1101</issn><abstract>We study self-gravitating, hydrostatic spheres with a polytropic equation of state P ∝ ρ^γ (where γ is the specific heat ratio of the gas), considering structures with γ ≈ 1 as a model for molecular cloud cores with small departures from isother- mality. We derive the properties (i.e., mass, radius and center to edge density ratio) as a function of γ for the maximal stable sphere through an application of “Bonnor’s stability criterion”. We find that in the γ = 1 → 4/3 range the mass of the maximal sphere (for a given central temperature) is almost constant, and that its radius and center to edge density ratio are growing functions of γ. We therefore have maximal stable, self-gravitating spheres with similar masses, but with increasing center to edge density contrasts for increasing departures from isothermality.</abstract><pub>Instituto de Astronomía, UNAM</pub><doi>10.22201/ia.01851101p.2020.56.01.07</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0185-1101
ispartof Revista mexicana de astronomía y astrofísica, 2020-04, Vol.56 (1), p.55-62
issn 0185-1101
language eng
recordid cdi_scielo_journals_S0185_11012020000100055
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astronomy & Astrophysics
title THE PROPERTIES AND STABILITY OF SELF-GRAVITATING, POLYTROPIC SPHERES WITH γ = 1 TO 1.4 SPECIFIC HEAT RATIOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20PROPERTIES%20AND%20STABILITY%20OF%20SELF-GRAVITATING,%20POLYTROPIC%20SPHERES%20WITH%20%CE%B3%20=%201%20TO%201.4%20SPECIFIC%20HEAT%20RATIOS&rft.jtitle=Revista%20mexicana%20de%20astronom%C3%ADa%20y%20astrof%C3%ADsica&rft.au=Raga,%20A.%20C.&rft.date=2020-04-01&rft.volume=56&rft.issue=1&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=0185-1101&rft_id=info:doi/10.22201/ia.01851101p.2020.56.01.07&rft_dat=%3Cscielo_cross%3ES0185_11012020000100055%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0185_11012020000100055&rfr_iscdi=true