Dispersionless limit of integrable models

Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies of equations or by construction, such as the system of hydrodynamic type. Some of these equations are integrable in the Hamiltonian sense and appear in the study of topological minimal models. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of physics 2000-06, Vol.30 (2), p.455-468
1. Verfasser: Brunelli, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 2
container_start_page 455
container_title Brazilian journal of physics
container_volume 30
creator Brunelli, J. C.
description Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies of equations or by construction, such as the system of hydrodynamic type. Some of these equations are integrable in the Hamiltonian sense and appear in the study of topological minimal models. In the first part of the review, we will give a brief introduction to integrable models, mainly its Lax representation. Then, we will introduce the dispersionless limit and show some of our results concerning the two-component hyperbolic system of equations such as the polytropic gas and Born-Infeld equations.
doi_str_mv 10.1590/S0103-97332000000200030
format Article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0103_97332000000200030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0103_97332000000200030</scielo_id><sourcerecordid>S0103_97332000000200030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-d88d7ab0589dcbfc54db4458c7e4dc6e60299bc209b4c60d9ce68b4dd940d7ac3</originalsourceid><addsrcrecordid>eNp1kDtPxDAQhF2AxHHwG0hLkWMTOw-X6HhKJ1EAtRWvN8gnJz55Q8G_J3eHaBDTTDH6djQrxFUBq6LScPMKBchcN1KWcNDeJJyIxW9wJs6Zt3NSgZILcX3neUeJfRwDMWfBD37KYp_5caKP1NlA2RAdBb4Qp30XmC5_fCneH-7f1k_55uXxeX27yVEqOeWubV3TWaha7dD2WClnlapabEg5rKmGUmuLJWirsAankerWKue0ghlEuRSr411GTyGabfxM41xoDuPMn3Ez0BwBTJE5UW92yQ9d-jIFmP1b_iW_AcwaVPk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dispersionless limit of integrable models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brunelli, J. C.</creator><creatorcontrib>Brunelli, J. C.</creatorcontrib><description>Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies of equations or by construction, such as the system of hydrodynamic type. Some of these equations are integrable in the Hamiltonian sense and appear in the study of topological minimal models. In the first part of the review, we will give a brief introduction to integrable models, mainly its Lax representation. Then, we will introduce the dispersionless limit and show some of our results concerning the two-component hyperbolic system of equations such as the polytropic gas and Born-Infeld equations.</description><identifier>ISSN: 0103-9733</identifier><identifier>ISSN: 1678-4448</identifier><identifier>DOI: 10.1590/S0103-97332000000200030</identifier><language>eng</language><publisher>Sociedade Brasileira de Física</publisher><subject>PHYSICS, MULTIDISCIPLINARY</subject><ispartof>Brazilian journal of physics, 2000-06, Vol.30 (2), p.455-468</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-d88d7ab0589dcbfc54db4458c7e4dc6e60299bc209b4c60d9ce68b4dd940d7ac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids></links><search><creatorcontrib>Brunelli, J. C.</creatorcontrib><title>Dispersionless limit of integrable models</title><title>Brazilian journal of physics</title><addtitle>Braz. J. Phys</addtitle><description>Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies of equations or by construction, such as the system of hydrodynamic type. Some of these equations are integrable in the Hamiltonian sense and appear in the study of topological minimal models. In the first part of the review, we will give a brief introduction to integrable models, mainly its Lax representation. Then, we will introduce the dispersionless limit and show some of our results concerning the two-component hyperbolic system of equations such as the polytropic gas and Born-Infeld equations.</description><subject>PHYSICS, MULTIDISCIPLINARY</subject><issn>0103-9733</issn><issn>1678-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPxDAQhF2AxHHwG0hLkWMTOw-X6HhKJ1EAtRWvN8gnJz55Q8G_J3eHaBDTTDH6djQrxFUBq6LScPMKBchcN1KWcNDeJJyIxW9wJs6Zt3NSgZILcX3neUeJfRwDMWfBD37KYp_5caKP1NlA2RAdBb4Qp30XmC5_fCneH-7f1k_55uXxeX27yVEqOeWubV3TWaha7dD2WClnlapabEg5rKmGUmuLJWirsAankerWKue0ghlEuRSr411GTyGabfxM41xoDuPMn3Ez0BwBTJE5UW92yQ9d-jIFmP1b_iW_AcwaVPk</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Brunelli, J. C.</creator><general>Sociedade Brasileira de Física</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20000601</creationdate><title>Dispersionless limit of integrable models</title><author>Brunelli, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-d88d7ab0589dcbfc54db4458c7e4dc6e60299bc209b4c60d9ce68b4dd940d7ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>PHYSICS, MULTIDISCIPLINARY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunelli, J. C.</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Brazilian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunelli, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersionless limit of integrable models</atitle><jtitle>Brazilian journal of physics</jtitle><addtitle>Braz. J. Phys</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>30</volume><issue>2</issue><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0103-9733</issn><issn>1678-4448</issn><abstract>Nonlinear dispersionless equations arise as the dispersionless limit of well know integrable hierarchies of equations or by construction, such as the system of hydrodynamic type. Some of these equations are integrable in the Hamiltonian sense and appear in the study of topological minimal models. In the first part of the review, we will give a brief introduction to integrable models, mainly its Lax representation. Then, we will introduce the dispersionless limit and show some of our results concerning the two-component hyperbolic system of equations such as the polytropic gas and Born-Infeld equations.</abstract><pub>Sociedade Brasileira de Física</pub><doi>10.1590/S0103-97332000000200030</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0103-9733
ispartof Brazilian journal of physics, 2000-06, Vol.30 (2), p.455-468
issn 0103-9733
1678-4448
language eng
recordid cdi_scielo_journals_S0103_97332000000200030
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects PHYSICS, MULTIDISCIPLINARY
title Dispersionless limit of integrable models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersionless%20limit%20of%20integrable%20models&rft.jtitle=Brazilian%20journal%20of%20physics&rft.au=Brunelli,%20J.%20C.&rft.date=2000-06-01&rft.volume=30&rft.issue=2&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0103-9733&rft_id=info:doi/10.1590/S0103-97332000000200030&rft_dat=%3Cscielo_cross%3ES0103_97332000000200030%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0103_97332000000200030&rfr_iscdi=true