Shortest path fractal dimension for randomly crumpled thin paper sheets
We realized a study of the shortest path fractal dimension in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such...
Gespeichert in:
Veröffentlicht in: | Revista mexicana de física 2018-08, Vol.64 (4 Jul-Aug), p.415-419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 4 Jul-Aug |
container_start_page | 415 |
container_title | Revista mexicana de física |
container_volume | 64 |
creator | Sánchez Chávez, Hugo David Flores Cano, Leonardo |
description | We realized a study of the shortest path fractal dimension in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations. |
doi_str_mv | 10.31349/RevMexFis.64.415 |
format | Article |
fullrecord | <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0035_001X2018000400415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0035_001X2018000400415</scielo_id><sourcerecordid>S0035_001X2018000400415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfwLd8gdabNG3TRxluDiaCU_AtpPlDO9qmJJm4b2_rRLhwuA-_czgHoXsCaUYyVj28ma8X871uQ1qwlJH8Ai1owbOEUsou0QIgyxMA8nmNbkI4zC8FWKDNvnE-mhDxKGODrZcqyg7rtjdDaN2ArfPYy0G7vjth5Y_92BmNY9MOEzEaj0NjTAy36MrKLpi7P12ij_XT--o52b1utqvHXaIyWsZEs7rmJdO5yiUUtGSVBMUZV8zSOtdgallUBChVldG21FJyMLm0da0qWnGSLVF69g2qNZ0TB3f0wxQo9nMlMTekQDgAsOlIPgHkDCjvQvDGitG3vfQnQUD8Tif-pxMFEzPzA8bJYz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</creator><creatorcontrib>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</creatorcontrib><description>We realized a study of the shortest path fractal dimension in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</description><identifier>ISSN: 0035-001X</identifier><identifier>EISSN: 2683-2224</identifier><identifier>DOI: 10.31349/RevMexFis.64.415</identifier><language>eng</language><publisher>Sociedad Mexicana de Física</publisher><subject>Physics, Multidisciplinary</subject><ispartof>Revista mexicana de física, 2018-08, Vol.64 (4 Jul-Aug), p.415-419</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Sánchez Chávez, Hugo David</creatorcontrib><creatorcontrib>Flores Cano, Leonardo</creatorcontrib><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><title>Revista mexicana de física</title><addtitle>Rev. mex. fis</addtitle><description>We realized a study of the shortest path fractal dimension in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</description><subject>Physics, Multidisciplinary</subject><issn>0035-001X</issn><issn>2683-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfwLd8gdabNG3TRxluDiaCU_AtpPlDO9qmJJm4b2_rRLhwuA-_czgHoXsCaUYyVj28ma8X871uQ1qwlJH8Ai1owbOEUsou0QIgyxMA8nmNbkI4zC8FWKDNvnE-mhDxKGODrZcqyg7rtjdDaN2ArfPYy0G7vjth5Y_92BmNY9MOEzEaj0NjTAy36MrKLpi7P12ij_XT--o52b1utqvHXaIyWsZEs7rmJdO5yiUUtGSVBMUZV8zSOtdgallUBChVldG21FJyMLm0da0qWnGSLVF69g2qNZ0TB3f0wxQo9nMlMTekQDgAsOlIPgHkDCjvQvDGitG3vfQnQUD8Tif-pxMFEzPzA8bJYz8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Sánchez Chávez, Hugo David</creator><creator>Flores Cano, Leonardo</creator><general>Sociedad Mexicana de Física</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20180801</creationdate><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><author>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Physics, Multidisciplinary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez Chávez, Hugo David</creatorcontrib><creatorcontrib>Flores Cano, Leonardo</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez Chávez, Hugo David</au><au>Flores Cano, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest path fractal dimension for randomly crumpled thin paper sheets</atitle><jtitle>Revista mexicana de física</jtitle><addtitle>Rev. mex. fis</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>64</volume><issue>4 Jul-Aug</issue><spage>415</spage><epage>419</epage><pages>415-419</pages><issn>0035-001X</issn><eissn>2683-2224</eissn><abstract>We realized a study of the shortest path fractal dimension in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</abstract><pub>Sociedad Mexicana de Física</pub><doi>10.31349/RevMexFis.64.415</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-001X |
ispartof | Revista mexicana de física, 2018-08, Vol.64 (4 Jul-Aug), p.415-419 |
issn | 0035-001X 2683-2224 |
language | eng |
recordid | cdi_scielo_journals_S0035_001X2018000400415 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Physics, Multidisciplinary |
title | Shortest path fractal dimension for randomly crumpled thin paper sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20path%20fractal%20dimension%20for%20randomly%20crumpled%20thin%20paper%20sheets&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=S%C3%A1nchez%20Ch%C3%A1vez,%20Hugo%20David&rft.date=2018-08-01&rft.volume=64&rft.issue=4%20Jul-Aug&rft.spage=415&rft.epage=419&rft.pages=415-419&rft.issn=0035-001X&rft.eissn=2683-2224&rft_id=info:doi/10.31349/RevMexFis.64.415&rft_dat=%3Cscielo_cross%3ES0035_001X2018000400415%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0035_001X2018000400415&rfr_iscdi=true |