Shortest path fractal dimension for randomly crumpled thin paper sheets

We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de física 2018-08, Vol.64 (4 Jul-Aug), p.415-419
Hauptverfasser: Sánchez Chávez, Hugo David, Flores Cano, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 4 Jul-Aug
container_start_page 415
container_title Revista mexicana de física
container_volume 64
creator Sánchez Chávez, Hugo David
Flores Cano, Leonardo
description We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.
doi_str_mv 10.31349/RevMexFis.64.415
format Article
fullrecord <record><control><sourceid>scielo_cross</sourceid><recordid>TN_cdi_scielo_journals_S0035_001X2018000400415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0035_001X2018000400415</scielo_id><sourcerecordid>S0035_001X2018000400415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfwLd8gdabNG3TRxluDiaCU_AtpPlDO9qmJJm4b2_rRLhwuA-_czgHoXsCaUYyVj28ma8X871uQ1qwlJH8Ai1owbOEUsou0QIgyxMA8nmNbkI4zC8FWKDNvnE-mhDxKGODrZcqyg7rtjdDaN2ArfPYy0G7vjth5Y_92BmNY9MOEzEaj0NjTAy36MrKLpi7P12ij_XT--o52b1utqvHXaIyWsZEs7rmJdO5yiUUtGSVBMUZV8zSOtdgallUBChVldG21FJyMLm0da0qWnGSLVF69g2qNZ0TB3f0wxQo9nMlMTekQDgAsOlIPgHkDCjvQvDGitG3vfQnQUD8Tif-pxMFEzPzA8bJYz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</creator><creatorcontrib>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</creatorcontrib><description>We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</description><identifier>ISSN: 0035-001X</identifier><identifier>EISSN: 2683-2224</identifier><identifier>DOI: 10.31349/RevMexFis.64.415</identifier><language>eng</language><publisher>Sociedad Mexicana de Física</publisher><subject>Physics, Multidisciplinary</subject><ispartof>Revista mexicana de física, 2018-08, Vol.64 (4 Jul-Aug), p.415-419</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Sánchez Chávez, Hugo David</creatorcontrib><creatorcontrib>Flores Cano, Leonardo</creatorcontrib><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><title>Revista mexicana de física</title><addtitle>Rev. mex. fis</addtitle><description>We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</description><subject>Physics, Multidisciplinary</subject><issn>0035-001X</issn><issn>2683-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfwLd8gdabNG3TRxluDiaCU_AtpPlDO9qmJJm4b2_rRLhwuA-_czgHoXsCaUYyVj28ma8X871uQ1qwlJH8Ai1owbOEUsou0QIgyxMA8nmNbkI4zC8FWKDNvnE-mhDxKGODrZcqyg7rtjdDaN2ArfPYy0G7vjth5Y_92BmNY9MOEzEaj0NjTAy36MrKLpi7P12ij_XT--o52b1utqvHXaIyWsZEs7rmJdO5yiUUtGSVBMUZV8zSOtdgallUBChVldG21FJyMLm0da0qWnGSLVF69g2qNZ0TB3f0wxQo9nMlMTekQDgAsOlIPgHkDCjvQvDGitG3vfQnQUD8Tif-pxMFEzPzA8bJYz8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Sánchez Chávez, Hugo David</creator><creator>Flores Cano, Leonardo</creator><general>Sociedad Mexicana de Física</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GPN</scope></search><sort><creationdate>20180801</creationdate><title>Shortest path fractal dimension for randomly crumpled thin paper sheets</title><author>Sánchez Chávez, Hugo David ; Flores Cano, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d4bb874d5c5a062749a0c848c4f2b5d0eba691022c9edf7daa80e5afbbc929813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Physics, Multidisciplinary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez Chávez, Hugo David</creatorcontrib><creatorcontrib>Flores Cano, Leonardo</creatorcontrib><collection>CrossRef</collection><collection>SciELO</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez Chávez, Hugo David</au><au>Flores Cano, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest path fractal dimension for randomly crumpled thin paper sheets</atitle><jtitle>Revista mexicana de física</jtitle><addtitle>Rev. mex. fis</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>64</volume><issue>4 Jul-Aug</issue><spage>415</spage><epage>419</epage><pages>415-419</pages><issn>0035-001X</issn><eissn>2683-2224</eissn><abstract>We realized a study of the shortest path fractal dimension  in three dimensions for randomly crumpled paper balls. We took measurements between all possible combinations of pairs of points in crumpled and flat configurations, we found that a correlation between these distances exist, even more, such mean experimental value is dmin=1.2953±0.02 that coincides almost numerically with the very known 3D shortest path fractal dimension for percolation systems reported in computational simulations.</abstract><pub>Sociedad Mexicana de Física</pub><doi>10.31349/RevMexFis.64.415</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-001X
ispartof Revista mexicana de física, 2018-08, Vol.64 (4 Jul-Aug), p.415-419
issn 0035-001X
2683-2224
language eng
recordid cdi_scielo_journals_S0035_001X2018000400415
source EZB-FREE-00999 freely available EZB journals
subjects Physics, Multidisciplinary
title Shortest path fractal dimension for randomly crumpled thin paper sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20path%20fractal%20dimension%20for%20randomly%20crumpled%20thin%20paper%20sheets&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=S%C3%A1nchez%20Ch%C3%A1vez,%20Hugo%20David&rft.date=2018-08-01&rft.volume=64&rft.issue=4%20Jul-Aug&rft.spage=415&rft.epage=419&rft.pages=415-419&rft.issn=0035-001X&rft.eissn=2683-2224&rft_id=info:doi/10.31349/RevMexFis.64.415&rft_dat=%3Cscielo_cross%3ES0035_001X2018000400415%3C/scielo_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0035_001X2018000400415&rfr_iscdi=true