On renormalizability of a non-linear abelian gauge model

Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum extension through its renormalizab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de física 2012-04, Vol.58 (2), p.152-159
Hauptverfasser: Chauca, J., Doria, R., Valle, J.L. M.
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 152
container_title Revista mexicana de física
container_volume 58
creator Chauca, J.
Doria, R.
Valle, J.L. M.
description Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.
format Article
fullrecord <record><control><sourceid>scielo</sourceid><recordid>TN_cdi_scielo_journals_S0035_001X2012000200006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0035_001X2012000200006</scielo_id><sourcerecordid>S0035_001X2012000200006</sourcerecordid><originalsourceid>FETCH-LOGICAL-s194t-7bedeb9ee875cafa5aed04701fe3f128db48e6c7d397dd17c9fd8755e414e9b33</originalsourceid><addsrcrecordid>eNotj0FLAzEUhHNQsK3-h_yByMsm22yOUrQKhR5U8La8bF5KSprApj20v95d9DAMA8MM3x1bAKhWAMifB7as9TjHBmDBun3mI-UynjDFG7qY4vnKS-DIc8kixUw4cnSUImZ-wMuB-Kl4So_sPmCq9PTvK_b99vq1eRe7_fZj87ITVVp9FsaRJ2eJOtMOGLBF8qANyEAqyKbzTne0HoxX1ngvzWCDn6otaanJOqVW7Plvtw6RUumP5TLm6bD_nBn6GakBObHALFirX-eWRFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On renormalizability of a non-linear abelian gauge model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chauca, J. ; Doria, R. ; Valle, J.L. M.</creator><creatorcontrib>Chauca, J. ; Doria, R. ; Valle, J.L. M.</creatorcontrib><description>Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.</description><identifier>ISSN: 0035-001X</identifier><language>eng ; por</language><publisher>Sociedad Mexicana de Física</publisher><subject>Physics, Multidisciplinary</subject><ispartof>Revista mexicana de física, 2012-04, Vol.58 (2), p.152-159</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids></links><search><creatorcontrib>Chauca, J.</creatorcontrib><creatorcontrib>Doria, R.</creatorcontrib><creatorcontrib>Valle, J.L. M.</creatorcontrib><title>On renormalizability of a non-linear abelian gauge model</title><title>Revista mexicana de física</title><addtitle>Rev. mex. fis</addtitle><description>Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.</description><subject>Physics, Multidisciplinary</subject><issn>0035-001X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotj0FLAzEUhHNQsK3-h_yByMsm22yOUrQKhR5U8La8bF5KSprApj20v95d9DAMA8MM3x1bAKhWAMifB7as9TjHBmDBun3mI-UynjDFG7qY4vnKS-DIc8kixUw4cnSUImZ-wMuB-Kl4So_sPmCq9PTvK_b99vq1eRe7_fZj87ITVVp9FsaRJ2eJOtMOGLBF8qANyEAqyKbzTne0HoxX1ngvzWCDn6otaanJOqVW7Plvtw6RUumP5TLm6bD_nBn6GakBObHALFirX-eWRFQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Chauca, J.</creator><creator>Doria, R.</creator><creator>Valle, J.L. M.</creator><general>Sociedad Mexicana de Física</general><scope>GPN</scope></search><sort><creationdate>20120401</creationdate><title>On renormalizability of a non-linear abelian gauge model</title><author>Chauca, J. ; Doria, R. ; Valle, J.L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s194t-7bedeb9ee875cafa5aed04701fe3f128db48e6c7d397dd17c9fd8755e414e9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2012</creationdate><topic>Physics, Multidisciplinary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauca, J.</creatorcontrib><creatorcontrib>Doria, R.</creatorcontrib><creatorcontrib>Valle, J.L. M.</creatorcontrib><collection>SciELO</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauca, J.</au><au>Doria, R.</au><au>Valle, J.L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On renormalizability of a non-linear abelian gauge model</atitle><jtitle>Revista mexicana de física</jtitle><addtitle>Rev. mex. fis</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>58</volume><issue>2</issue><spage>152</spage><epage>159</epage><pages>152-159</pages><issn>0035-001X</issn><abstract>Considering that physical processes work as a group, a whole gauge procedure becomes necessary. In a previous work, we have developed this new approach for a classical non-linear abelian gauge model. At this work, one intends to understand the corresponding quantum extension through its renormalizability. For this, one studies Feynman graphs, quantum action principle, power counting procedure, Ward identities and primitively divergent graphs. Under this renormalization procedure one computes a non-linear whole abelian gauge model.</abstract><pub>Sociedad Mexicana de Física</pub><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-001X
ispartof Revista mexicana de física, 2012-04, Vol.58 (2), p.152-159
issn 0035-001X
language eng ; por
recordid cdi_scielo_journals_S0035_001X2012000200006
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Physics, Multidisciplinary
title On renormalizability of a non-linear abelian gauge model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20renormalizability%20of%20a%20non-linear%20abelian%20gauge%20model&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=Chauca,%20J.&rft.date=2012-04-01&rft.volume=58&rft.issue=2&rft.spage=152&rft.epage=159&rft.pages=152-159&rft.issn=0035-001X&rft_id=info:doi/&rft_dat=%3Cscielo%3ES0035_001X2012000200006%3C/scielo%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0035_001X2012000200006&rfr_iscdi=true