Symplectic structures and Hamiltonians of a mechanical system

It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de física 2003-10, Vol.49 (5), p.445-449
Hauptverfasser: Torres del Castillo, G.F., Mendoza Torres, G.
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 5
container_start_page 445
container_title Revista mexicana de física
container_volume 49
creator Torres del Castillo, G.F.
Mendoza Torres, G.
description It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.
format Article
fullrecord <record><control><sourceid>scielo</sourceid><recordid>TN_cdi_scielo_journals_S0035_001X2003000500010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0035_001X2003000500010</scielo_id><sourcerecordid>S0035_001X2003000500010</sourcerecordid><originalsourceid>FETCH-LOGICAL-s192t-4f64fb486abc36320aefdabf9ae02c5c76f04e7492e0498505500642637907503</originalsourceid><addsrcrecordid>eNotj71OwzAUhT2ARCl9B79A0I3_Ug8MqAKKVImhIHWLblxbuHIclOsMfXsSwXR0hvMdfTdsBSB1BVCf7tg90WWpAmDFno7X_id5V6LjVMbJlWn0xDGf-R77mMqQI2biQ-DIe---MUeHidOViu8f2G3ARH7zn2v29fryudtXh4-3993zoaLailKpYFTo1NZg56SRAtCHM3bBogfhtGtMAOUbZYUHZbcatAYwShjZWGg0yDV7_OOSiz4N7WWYxjwftsdFpF28ZhsJAPMQapC_cctE0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symplectic structures and Hamiltonians of a mechanical system</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Torres del Castillo, G.F. ; Mendoza Torres, G.</creator><creatorcontrib>Torres del Castillo, G.F. ; Mendoza Torres, G.</creatorcontrib><description>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</description><identifier>ISSN: 0035-001X</identifier><language>eng ; por</language><publisher>Sociedad Mexicana de Física</publisher><subject>Physics, Multidisciplinary</subject><ispartof>Revista mexicana de física, 2003-10, Vol.49 (5), p.445-449</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Torres del Castillo, G.F.</creatorcontrib><creatorcontrib>Mendoza Torres, G.</creatorcontrib><title>Symplectic structures and Hamiltonians of a mechanical system</title><title>Revista mexicana de física</title><addtitle>Rev. mex. fis</addtitle><description>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</description><subject>Physics, Multidisciplinary</subject><issn>0035-001X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAUhT2ARCl9B79A0I3_Ug8MqAKKVImhIHWLblxbuHIclOsMfXsSwXR0hvMdfTdsBSB1BVCf7tg90WWpAmDFno7X_id5V6LjVMbJlWn0xDGf-R77mMqQI2biQ-DIe---MUeHidOViu8f2G3ARH7zn2v29fryudtXh4-3993zoaLailKpYFTo1NZg56SRAtCHM3bBogfhtGtMAOUbZYUHZbcatAYwShjZWGg0yDV7_OOSiz4N7WWYxjwftsdFpF28ZhsJAPMQapC_cctE0w</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Torres del Castillo, G.F.</creator><creator>Mendoza Torres, G.</creator><general>Sociedad Mexicana de Física</general><scope>GPN</scope></search><sort><creationdate>20031001</creationdate><title>Symplectic structures and Hamiltonians of a mechanical system</title><author>Torres del Castillo, G.F. ; Mendoza Torres, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s192t-4f64fb486abc36320aefdabf9ae02c5c76f04e7492e0498505500642637907503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2003</creationdate><topic>Physics, Multidisciplinary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres del Castillo, G.F.</creatorcontrib><creatorcontrib>Mendoza Torres, G.</creatorcontrib><collection>SciELO</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres del Castillo, G.F.</au><au>Mendoza Torres, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic structures and Hamiltonians of a mechanical system</atitle><jtitle>Revista mexicana de física</jtitle><addtitle>Rev. mex. fis</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>49</volume><issue>5</issue><spage>445</spage><epage>449</epage><pages>445-449</pages><issn>0035-001X</issn><abstract>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</abstract><pub>Sociedad Mexicana de Física</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-001X
ispartof Revista mexicana de física, 2003-10, Vol.49 (5), p.445-449
issn 0035-001X
language eng ; por
recordid cdi_scielo_journals_S0035_001X2003000500010
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Physics, Multidisciplinary
title Symplectic structures and Hamiltonians of a mechanical system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20structures%20and%20Hamiltonians%20of%20a%20mechanical%20system&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=Torres%20del%20Castillo,%20G.F.&rft.date=2003-10-01&rft.volume=49&rft.issue=5&rft.spage=445&rft.epage=449&rft.pages=445-449&rft.issn=0035-001X&rft_id=info:doi/&rft_dat=%3Cscielo%3ES0035_001X2003000500010%3C/scielo%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0035_001X2003000500010&rfr_iscdi=true