Symplectic structures and Hamiltonians of a mechanical system
It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given...
Gespeichert in:
Veröffentlicht in: | Revista mexicana de física 2003-10, Vol.49 (5), p.445-449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 5 |
container_start_page | 445 |
container_title | Revista mexicana de física |
container_volume | 49 |
creator | Torres del Castillo, G.F. Mendoza Torres, G. |
description | It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system. |
format | Article |
fullrecord | <record><control><sourceid>scielo</sourceid><recordid>TN_cdi_scielo_journals_S0035_001X2003000500010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0035_001X2003000500010</scielo_id><sourcerecordid>S0035_001X2003000500010</sourcerecordid><originalsourceid>FETCH-LOGICAL-s192t-4f64fb486abc36320aefdabf9ae02c5c76f04e7492e0498505500642637907503</originalsourceid><addsrcrecordid>eNotj71OwzAUhT2ARCl9B79A0I3_Ug8MqAKKVImhIHWLblxbuHIclOsMfXsSwXR0hvMdfTdsBSB1BVCf7tg90WWpAmDFno7X_id5V6LjVMbJlWn0xDGf-R77mMqQI2biQ-DIe---MUeHidOViu8f2G3ARH7zn2v29fryudtXh4-3993zoaLailKpYFTo1NZg56SRAtCHM3bBogfhtGtMAOUbZYUHZbcatAYwShjZWGg0yDV7_OOSiz4N7WWYxjwftsdFpF28ZhsJAPMQapC_cctE0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symplectic structures and Hamiltonians of a mechanical system</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Torres del Castillo, G.F. ; Mendoza Torres, G.</creator><creatorcontrib>Torres del Castillo, G.F. ; Mendoza Torres, G.</creatorcontrib><description>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</description><identifier>ISSN: 0035-001X</identifier><language>eng ; por</language><publisher>Sociedad Mexicana de Física</publisher><subject>Physics, Multidisciplinary</subject><ispartof>Revista mexicana de física, 2003-10, Vol.49 (5), p.445-449</ispartof><rights>This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids></links><search><creatorcontrib>Torres del Castillo, G.F.</creatorcontrib><creatorcontrib>Mendoza Torres, G.</creatorcontrib><title>Symplectic structures and Hamiltonians of a mechanical system</title><title>Revista mexicana de física</title><addtitle>Rev. mex. fis</addtitle><description>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</description><subject>Physics, Multidisciplinary</subject><issn>0035-001X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAUhT2ARCl9B79A0I3_Ug8MqAKKVImhIHWLblxbuHIclOsMfXsSwXR0hvMdfTdsBSB1BVCf7tg90WWpAmDFno7X_id5V6LjVMbJlWn0xDGf-R77mMqQI2biQ-DIe---MUeHidOViu8f2G3ARH7zn2v29fryudtXh4-3993zoaLailKpYFTo1NZg56SRAtCHM3bBogfhtGtMAOUbZYUHZbcatAYwShjZWGg0yDV7_OOSiz4N7WWYxjwftsdFpF28ZhsJAPMQapC_cctE0w</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Torres del Castillo, G.F.</creator><creator>Mendoza Torres, G.</creator><general>Sociedad Mexicana de Física</general><scope>GPN</scope></search><sort><creationdate>20031001</creationdate><title>Symplectic structures and Hamiltonians of a mechanical system</title><author>Torres del Castillo, G.F. ; Mendoza Torres, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s192t-4f64fb486abc36320aefdabf9ae02c5c76f04e7492e0498505500642637907503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2003</creationdate><topic>Physics, Multidisciplinary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres del Castillo, G.F.</creatorcontrib><creatorcontrib>Mendoza Torres, G.</creatorcontrib><collection>SciELO</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres del Castillo, G.F.</au><au>Mendoza Torres, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symplectic structures and Hamiltonians of a mechanical system</atitle><jtitle>Revista mexicana de física</jtitle><addtitle>Rev. mex. fis</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>49</volume><issue>5</issue><spage>445</spage><epage>449</epage><pages>445-449</pages><issn>0035-001X</issn><abstract>It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.</abstract><pub>Sociedad Mexicana de Física</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-001X |
ispartof | Revista mexicana de física, 2003-10, Vol.49 (5), p.445-449 |
issn | 0035-001X |
language | eng ; por |
recordid | cdi_scielo_journals_S0035_001X2003000500010 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Physics, Multidisciplinary |
title | Symplectic structures and Hamiltonians of a mechanical system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scielo&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symplectic%20structures%20and%20Hamiltonians%20of%20a%20mechanical%20system&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=Torres%20del%20Castillo,%20G.F.&rft.date=2003-10-01&rft.volume=49&rft.issue=5&rft.spage=445&rft.epage=449&rft.pages=445-449&rft.issn=0035-001X&rft_id=info:doi/&rft_dat=%3Cscielo%3ES0035_001X2003000500010%3C/scielo%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_scielo_id=S0035_001X2003000500010&rfr_iscdi=true |